摘要:
Provided is a fuel composition for a fuel cell including a first fuel which generates protons and electrons, and hydrogen gas. Also, provided is a fuel cell using the fuel composition. Using the fuel composition for a fuel cell, catalyst activation can be increased. Also, a fuel cell having high efficiency and excellent performance can be prepared using the fuel composition.
摘要:
An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.
摘要:
A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.
摘要:
An ordered mesoporous carbon (OMC) composite catalyst includes an OMC; and metal particles and at least one component selected from a group consisting of nitrogen and sulfur included in the OMC. The ordered mesoporous carbon composite catalyst may be formed by impregnating an ordered mesoporous silica with a mixture of at least one selected from the group consisting of a nitrogen-containing carbon precursor, and a sulfur-containing carbon precursor, a metal precursor, and a solvent; drying and heat-treating the impregnated OMS; carbonizing the dried and heat-treated OMS to obtain a carbon-OMS composite; and removing the OMS from the carbon-OMS composite. A fuel cell may contain the OMC composite catalyst.
摘要:
An anode active material including a porous transition metal oxide; an anode including the anode active material; a lithium battery including the anode; and a method of preparing the anode active material.
摘要:
A platinum (Pt)/ruthenium (Ru) alloy catalyst, highly resistant to CO poisoning, having a lattice constant of 3.856-3.885 Å and a particle size of 2-5 nm, and supported on a carrier. The Pt/Ru alloy catalyst is highly resistant to CO poisoning, thereby allowing for higher catalytic activity when used. That is, an electrode and a fuel cell having a longer lifetime can be prepared using a smaller amount of the Pt/Ru alloy catalyst.
摘要:
A heteroatom-containing mesoporous carbon has a pore diameter of 11 to 35 nm, has a specific surface area of 500 m2/g or more, and comprises a heteroatom. The heteroatom-containing mesoporous carbon is formed by a method including mixing a carbon precursor, a heteroatom-containing precursor, and silica particles to prepare a carbon precursor mixture; drying and carbonizing the carbon precursor mixture to prepare a silica-carbon composite; and removing silica from the silica-carbon composite. An anode and/or a cathode of fuel cell includes catalyst particles supported on the heteroatom-containing mesoporous carbon.
摘要:
A catalyst particle having high oxygen reduction reactivity and low methanol oxidation reactivity, a supported catalyst comprising the catalyst particle, and a fuel cell using a cathode comprising the supported catalyst are provided. The whole catalyst particle or at least the surface of the catalyst particle includes an alloy of two or more metals selected from the group consisting of Fe, Co, Ni, Rh, Pd, Pt, Cu, Ag, Au, Zn, and Cd. The alloy has a stronger oxygen-binding force than platinum or a weaker hydrogen-binding force than platinum.
摘要:
Carbon nanotubes have an R value of at least 1.3, where R is defined as the ratio (ID/IG) of an integral value of D band intensity (ID) to an integral value of G band intensity (IG) in the Raman spectrum. Such carbon nanotubes can be used to form a support catalyst with good catalyst activity because the surface defects on the carbon nanotubes promote improved catalyst distribution in that the support catalyst includes catalyst particles having a small mean particle size and a slight variation in particle size. Such a support catalyst has particularly useful properties when used as a catalyst layer for a fuel cell electrode.
摘要翻译:碳纳米管具有至少1.3的R值,其中R被定义为D带强度(I)的积分值的比值(I / D / SUB> D SUB>)到拉曼光谱中的G带强度(I> G )的积分值。 这种碳纳米管可用于形成具有良好催化剂活性的载体催化剂,因为碳纳米管上的表面缺陷促进了催化剂分布的改善,因为载体催化剂包括具有小的平均粒径和微小粒度变化的催化剂颗粒。 当用作燃料电池电极的催化剂层时,这种载体催化剂具有特别有用的特性。
摘要:
Porous carbon materials and methods of manufacturing the same are provided. One method includes forming a carbon-metal oxide composite by heating a coordination polymer to form a carbon-metal oxide composite, and then removing the metal oxide from the carbon-metal oxide composite. The porous carbon material has an average pore diameter ranging from about 10 nm to about 100 nm, and a d002 ranging from about 3.35 to 3.50 Å.