Abstract:
Two or more workload indicators affecting a memory cell of a resistance-based, non-volatile memory are measured. The two or more workload indicators are applied to a transfer function that predicts a resistance shift and/or resistance noise variance in response to the two or more workload indicators. A result of the transfer function is applied to shift and/or determine a threshold resistance used for at least one of a program operation and a read operation affecting the memory cell. An error rate of the memory cell is reduced as a result.
Abstract:
Data is written to cells of a resistance-based, non-volatile memory. An activity metric is tracked since the writing of the data to the cells. In response to the activity metric satisfying a threshold, a bias signal is applied to the cells to reverse a resistance shift of the cells.
Abstract:
Memory arrays that include a first memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate; and a second memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate, wherein the first memory cell and the second memory cell are positioned parallel to each other.
Abstract:
A memory device includes a stack of layers comprising a plurality of alternating layers of continuous electrically conductive material word line layers with layers of continuous electrically insulating material. A plurality of vias vertically extend through the stack of layers and a vertical bit line is disposed within each via. A layer of switching material separates the vertical bit line from the stack of layers, thereby forming an array of RRAM cells.
Abstract:
An apparatus includes a controller capable of being coupled to a host interface and a memory device. The memory device includes two or more non-hierarchical, non-volatile memory units having different minimum addressable data unit sizes. The controller is configured to at least perform determining a workload indicator of a data object being stored in the memory device via the host interface. The controller selects one of the memory units in response to the workload indicator of the data object corresponding to the minimum addressable data unit size of the selected memory unit corresponding to the workload indicator. The data object is stored in the selected memory unit in response thereto.
Abstract:
Parameters indicative of resistance variance of the memory elements are tracked. The resistance variance affects values of data stored in the resistance-based memory elements. A hash function is performed for each memory element. The hash function returns a reference to one of a plurality of counter elements. A value of each counter element is modified in response to the tracked parameter data of the associated memory element. Read operations affecting the memory elements are adjusted based on the values for the associated counter elements.
Abstract:
A data storage device may generally be constructed and operated with at least one variable resistance memory cell configured with non-factory operational parameters by a controller. The non-factory operational parameters are assigned in response to an identified variance from a predetermined threshold in at least one variable resistance memory cell.