Abstract:
A poly(ester amide) (PEA) coating with enhanced mechanical and/or release rate for coating an implantable device, such as a drug-eluting stent, is disclosed. A method of forming the PEA coating onto a device and a method of treating a disorder, such as restenosis, are also disclosed.
Abstract:
An implantable medical device, such as a stent, is disclosed having a coating. The coating includes a poly(butylene terephthalate-co-ethylene glycol) polymer. The coating can also include a drug.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings comprising polymers of lactic acid.
Abstract:
The invention provides a method for single-step surface modification, grafting and sterilization for bio-active coating on materials and biomaterials used in medical devices, such as catheters, tissue engineering scaffolds, or drug delivery carrier materials. This may include any medical device or implantable that could benefit from improved antithrombogenic and biocompatible surfaces. Other relevant device examples may include heparin or urokinase coated stents to reduce clotting and restenosis, dental or ophthamological implants. These materials may be comprised of a variety of polymeric compositions such as, polyurethane, polyester, polytetrafluoroethylene, polyethylene, polymethylmethacrylate, polyHEMA, polyvinyl alcohol, polysiloxanes, polylactic or glycolic acids, polycaprolactone, etc. The substrates can also be metal, ceramics or biologically derived materials.
Abstract:
A process has been developed to reduce or relieve prostatic obstruction. The steps involved in the TUVOR Process include: 1. Transurethral Incision; 2. De-bulking and Intra-Prostatic Volume Reduction; 3. Intra-prostatic void exclusion and space filling with adhesive and/or therapeutic polymeric materials, alone or in combination with bioactive agents and/or mechanical means for closure; 4. Endourethral compression and prostatic mass remolding; 5. Endourethral Polymer Liner Layer. This liner formed from structurally supportive, yet eventually biodegradable, polymers further bolsters and supports the urethra and peri-urethral tissue during healing, eliminating the need for post-procedure catheter drainage. This step may be optional in specific clinical circumstances. The process is designed to allow outpatient treatment under local anesthesia for BPH.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
A therapeutic agent delivery system formed of a specific type of poly(ester amide) (PEA), a therapeutic agent, and a water miscible solvent is described herein. A method of delivering the therapeutic agent delivery system by delivering the therapeutic agent delivery system formed of a PEA polymer, a therapeutic agent, and a water miscible solvent to a physiological environment and separating the phase of the therapeutic agent delivery system to form a membrane from the polymer to contain the therapeutic agent within the physiological environment is also described. Additionally disclosed is a kit including a syringe and a therapeutic agent delivery system within the syringe.
Abstract:
The present disclosed subject matter is directed to a less invasive surgical system, apparatus and method including a guidable catheter for providing electroporation therapy to a subject suffering from heart or kidney disease. The system includes an electrical generator and an apparatus for denervating an artery. The apparatus includes a catheter having a proximal end, a distal end, a first lumen with a first exit port, a second lumen having a second exit port. The apparatus also includes a first needle including a first electrode. The apparatus also includes a displacement mechanism engaged to the catheter near the proximal end such that the displacement mechanism controls the linear position and angular position of the catheter.