Abstract:
Embodiments are directed toward measuring a three dimensional range to a target. A transmitter emits light toward the target. An aperture may receive light reflections from the target. The aperture may direct the reflections toward a sensor that comprises rows of pixels that have columns. The sensor is offset a predetermined distance from the transmitter. Anticipated arrival times of the reflections on the sensor are based on the departure times and the predetermined offset distance. A portion of the pixels are sequentially activated based on the anticipated arrival times. The target's three dimensional range measurement is based on the reflections detected by the portion of the pixels.
Abstract:
A method, apparatus, and manufacture for writing and annotation is provided. An image is provided on a surface. In one embodiment, each time invisible ink is deposited on the surface, the location of the invisible ink deposited on the surface is detected before the invisible ink vanishes from the surface. In another embodiment, when a tip of a stylus is in contact with a location of an image on the surface, employing three or more light detectors to detect light at the location. The detected light is employed to determine a position and an orientation of the tip of the stylus and the location on the surface, and modifying the image based on the stored information.
Abstract:
A three-dimension position tracking system is presented. The system includes transmitters and receivers. A transmitter scans continuous or pulsed coherent light beams across a target. The receiver detects the reflected beams. The system recursively determines the location of the target, as a function of time, via triangulation and observation of the time-of-flight of the incoming and outgoing beams. The transmitter includes ultra-fast scanning optics to scan the receiver's field-of-view. The receiver includes arrays of ultra-fast photosensitive pixels. The system determines the angles of the incoming beams based on the line-of-sight of the triggered pixels. By observing the incoming angles and correlating timestamps associated with the outgoing and incoming beams, the system accurately, and in near real-time, determines the location of the target. By combining the geometry of the scattered beams, as well as the beams' time-of-flight, ambiguities inherent to triangulation and ambiguities inherent to time-of-flight location methods are resolved.
Abstract:
An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.
Abstract:
An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.
Abstract:
A folded optical element waveguide that allows a minimum width bezel to be used around the perimeter of a light-based touch screen display. The apparatus and method includes a touch screen and a waveguide substrate provided adjacent the touch screen. The waveguide substrate includes a plurality of waveguides and a plurality of optical elements provided adjacent the touch screen. The waveguides include an internally reflective surface to reflect light perpendicular to the surface of the touch screen. The emitting and detecting waveguides are thus folded and provided around the side edges of the display. As a result, the width of the bezel around the display can be minimized.
Abstract:
A fingerprint sensor uses beams of light to detect a fingerprint as the finger is swiped over a ridged surface. The beams of light are directed toward individual regions of the ridged surface so that the light beams will generally be totally internally reflected when a finger is not touching the ridge. The total internal reflection characteristics of the ridged surface are altered at regions touched by the ridges on the finger as the finger is swiped over the sensor. This alters the amount of light reflected by the ridged surface. These changes in light reflection as the finger is swiped over the ridged surface can be observed simultaneously over multiple channels, preferably disposed laterally with respect to each other, to provide a fingerprint.
Abstract:
An apparatus for employing ambient light collected from an external light source to detect a user's fingers that are gripping at least a relatively transparent portion of a case. The ends of a plurality of waveguides are coupled at relatively unequal or equidistant positions to the interior surface of the transparent portion, where they are arranged to collect light from the exterior light source if the user's finger(s) are not gripping the mobile device at that position. If the light collected by the wave guides is blocked by one or more of the user's fingers, a profile can be determined for the placement, orientation (left handed or right handed), and size of the user's fingers and hand gripping the mobile device. Also, interactions of the fingers with the mobile device can be detected, such as lifting away, pressing, or sliding one or more fingers at the transparent portion for a short or relatively lengthy period of time. Additionally, the collected light can be provided by one or more external light sources, such as ambient light from remotely located sources, one or more illuminators within a mobile device such as a back light for a display, control or other element.
Abstract:
An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.
Abstract:
Flexible optical waveguide substrates that can be used with touch screen displays. The waveguide substrates include a flexible base material. A first optical layer having a first index of refraction value is formed on the flexible base material. A second optical layer is then formed on the first optical layer, the second optical layer being patterned to form a plurality of optical elements and waveguides respectively. The second optical layer also has a second index of refraction value higher than the first index of refraction value. Lastly, a third optical layer is formed on the second optical layer. The third optical layer has a third index of refraction value lower than the second index of refraction value. The high N second layer is therefore sandwiched between the lower N first and third layers, creating an internally reflective surface wherever the high N and low N materials are in contact. The base material and first, second and third optical layers thus form a flexible waveguide substrate.