Abstract:
An airfoil for a gas turbine engine includes a body having leading and trailing edges joined by spaced apart pressure and suction sides to provide an exterior airfoil surface defined by a perimeter wall. An interior wall is arranged interiorly and adjacent to the perimeter wall to provide a cooling passage there between. A cooling passage with first and second portions is tapered and respectively has first and second thicknesses. The first thickness is greater than the second thickness. The second thickness is less than 0.060 inch (1.52 mm).
Abstract:
A self-cooled orifice structure, that may be for a combustor of a gas turbine engine includes a hot side panel, a cold side panel spaced from the hot side panel, and a continuous first wall extending axially between the hot and cold side panels and spaced radially outward from a centerline. The structure may further include a first plurality of helical vanes projecting laterally, radially, inward from the first wall for flowing cooling air in a spiraling fashion through the cold side panel, then through the hot side panel.
Abstract:
A self-cooled orifice structure that may be for a combustor of a gas turbine engine, and may further be a dilution hole structure, includes a hot side panel, a cold side panel spaced from the hot side panel, and a continuous inner wall extending between the hot and cold side panels and defining an orifice having a centerline and communicating axially through the hot and cold side panels. A plurality of end walls of the structure are in a cooling cavity that is defined in-part by the hot and cold side panels and the inner wall. Each end wall extends between and are engaged to the hot and cold side panels and are circumferentially spaced from the next adjacent end wall. A plurality of inlet apertures extend through the cold side panel and are in fluid communication with the cavity, and each one of the plurality of inlet apertures are proximate to a first side of a respective one of the plurality of end walls. A plurality of outlet apertures extend through the hot side panel and are in fluid communication with the cavity, and each one of the plurality of outlet apertures are associated with an opposite second side of a respective one of the plurality of end walls.
Abstract:
A system includes a turbomachine having one or more inspection ports. An LWIR sensor is positioned in the inspection port of the turbomachine to sense thermal energy emitted by a turbomachine component. An imaging device can be operably connected to the LWIR sensor to convert signals from the LWIR sensor to a thermal image of the turbomachine component based on the sensed thermal energy. In some embodiments, the LWIR sensor configured to image a ceramic coated turbine blade.
Abstract:
An airfoil assembly includes an airfoil that has an exterior wall that defines an interior cavity. The exterior wall extends between a leading end and a trailing end and an open inboard end and an open outboard end. The exterior wall is formed of a high temperature-resistant material selected from refractory metal-based alloys, ceramic-based material or combinations thereof. A support frame extends in the interior cavity and protrudes from the interior cavity through at least one of the open inboard end and the open outboard end.
Abstract:
An aspect includes a system for a gas turbine engine. The system includes one or more bleeds of the gas turbine engine and a control system configured to check one or more activation conditions of a dirt rejection mode in the gas turbine engine. A bleed control schedule of the gas turbine engine is adjusted to extend a time to hold the one or more bleeds of the gas turbine engine partially open at a power setting above a threshold based on the one or more activation conditions. One or more deactivation conditions of the dirt rejection mode in the gas turbine engine are checked. The dirt rejection mode is deactivated to fully close the one or more bleeds based on the one or more deactivation conditions.
Abstract:
An assembly for a gas turbine engine includes a vane assembly having an inner platform and an airfoil section extending from the inner platform. A first combustor panel extends at least partially along the vane from upstream of the vane, and a blade outer air seal extends at least partially along the vane from downstream of the vane. The first combustor panel and the blade outer air seal define a platform gap located between a leading edge of the airfoil section of the vane and a trailing edge of the airfoil section of the vane.
Abstract:
A turbine engine system includes a heat source, a heat exchanger, a cooling medium inlet and a cooling medium outlet. The heat source includes a first passage. The heat exchanger includes a second passage and a third passage. The first and the second passages are configured in a closed loop circuit. The third passage is configured between the inlet and the outlet in an open loop circuit.
Abstract:
A liner panel for use in a combustor of a gas turbine engine, the liner panel including a liner panel with a perimeter rail and a multiple of intermediate rails. A combustor for a gas turbine engine including a support shell and a multiple of liner panels mounted to the support shell via a multiple of studs, each of the multiple of liner panels having a multiple of intermediate rails to form a multiple of circumferential cavities.
Abstract:
An airfoil includes an airfoil wall that defines a leading end, a trailing end, and suction and pressure sides that join the leading end and the trailing end. The airfoil wall is formed of a silicon-containing ceramic. A first environmental barrier topcoat is disposed on the suction side of the airfoil wall, and a second, different environmental barrier topcoat is disposed on the pressure side of the airfoil wall. The first topcoat is vaporization-resistant and the second topcoat is resistant to calcium-magnesium-aluminosilicate.