摘要:
Herein disclosed is a semiconductor integrated circuit for testing test data of two kinds of non-inverted and inverted statuses of all bits by itself with a prospective data of one kind to compress and output the test results. The semiconductor integrated circuit includes a decide circuit 25 for deciding a first status, in which the prospective data latched by a pattern register and the read data of a memory cell array are coincident, a second status, in which the read data is coincident with the logically inverted data of the prospective data, and a third statuses other than the first and second statuses through an exclusive OR gate to generate signals of 2 bits capable of discriminating the individual statuses. These statuses are informed to the outside of the semiconductor integrated circuit in accordance with high- and low-levels and a high-impedance.
摘要:
A temperature compensating capacitor of monolithic or multilayered configuration comprising a dielectric ceramic body and at least two electrodes buried therein. The ceramic body is composed of a major ingredient expressed by the formula, {(Sr.sub.1-x-y Ca.sub.x M.sub.y)O}.sub.k (Ti.sub.1-z Zr.sub.z)O.sub.2, where M is at least either of magnesium and zinc, and where x, y, k and z are numerals in the ranges of zero to 0.995 inclusive, 0.005 to 0.100 inclusive, 1.00 to 1.04 inclusive, and 0.005 to 0.100 inclusive, respectively. To this major ingredient is added a minor proportion of a mixture of boric oxide, silicon dioxide, and one or more metal oxides selected from among barium oxide, magnesium oxide, zinc oxide, strontium oxide and calcium oxide. For the fabrication of capacitors the mixture of the above major ingredient and additives in finely divided form are formed into moldings of desired shape and size, each with at least two electrodes buried therein. The moldings and electrodes are cosintered in a reductive or neutral atmosphere and then are reheated at a lower temperature in an oxidative atmosphere. The cosintering temperature can be so low that nickel or like base metal can be employed as the electrode material.
摘要:
A temperature compensating capacitor of monolithic or multilayered configuration comprising a dielectric ceramic body and at least two electrodes buried therein. The ceramic body is composed of a major ingredient expressed by the formula, (CaO).sub.k.(Zr.sub.1-x Ti.sub.x)O, where k and x are numerals in the ranges of 0.8 to 1.3 inclusive and of zero to 0.3 inclusive, respectively. To this major ingredient is added a minor proportion of a mixture of boric oxide, silicon dioxide, and one or more metal oxides selected from among barium oxide, magnesium oxide, zinc oxide, strontium oxide and calcium oxide. For the fabrication of capacitors the mixture of the above major ingredient and additives in finely divided form are formed into moldings of desired shape and size, each with at least two electrodes buried therein. The moldings and electrodes are cosintered in a reductive or neutral atmosphere and then are reheated at a lower temperature in an oxidative atmosphere. The cosintering temperature can be so low that nickel or like base metal can be employed as the electrode material.
摘要:
A temperature compensating capacitor of monolithic, multilayered configuration comprising a dielectric ceramic body and at least two electrodes buried therein. The ceramic body is composed of a major ingredient expressed by the formula, (CaO).sub.k .multidot.(Zr.sub.1-x Ti.sub.x)O.sub.2, where k and x are numerals in the ranges of 0.8 to 1.3 inclusive and of zero to 0.3 inclusive, respectively. To this major ingredient is added a minor proportion of a mixture of lithium oxide, silicon dioxide, and one or more metal oxides selected from among barium oxide, magnesium oxide, zinc oxide, strontium oxide and calcium oxide. For the fabrication of capacitors the mixture of the above major ingredient and additives in finely divided form are formed into moldings of desired shape and size, each with at least two electrodes buried therein. The moldings and electrodes are cosintered in a reductive or neutral atmosphere and then are reheated at a lower temperature in an oxidative atmosphere. The cosintering temperature can be so low that nickel or like base metal can be employed as the electrode material.
摘要:
A temperature compensating capacitor of monolithic or multilayered configuration comprising a dielectric ceramic body and at least two electrodes buried therein. The ceramic body is composed of a major ingredient expressed by the formula, (SrO).sub.k .multidot.(Zr.sub.1-x Ti.sub.x)O.sub.2, where k and x are numerals in the ranges of 0.8 to 1.3 inclusive and of zero to 0.25 inclusive, respectively. To this major ingredient is added a minor proportion of a mixture of boric oxide, silicon dioxide, and one or more metal oxides selected from among barium oxide, magnesium oxide, zinc oxide, strontium oxide and calcium oxide. For the fabrication of capacitors the mixture of the above major ingredient and additives in finely divided form are formed into moldings of desired shape and size, each with at least two electrodes buried therein. The moldings and electrodes are cosintered in a reductive or neutral atmosphere and then are reheated at a lower temperature in an oxidative atmosphere. The cosintering temperature can be so low that nickel or like base metal can be employed as the electrode material.
摘要:
A ceramic composition capable of sintering at a sufficiently low temperature to enable the use of a low cost base metal as the electrode material in the fabrication of capacitors. The major ingredient of the composition is expressed as Ba.sub.k-x-y M.sub.x L.sub.y O.sub.k TiO.sub.2, where M is at least either of mag-nesium and zinc, L is at least either of strontium and calcium, k, x and y are numerals in the ranges of 1.00 to 1.04, 0.002 to 0.049, and 0.001 to 0.048, respectively, and x+y is a value in the range of 0.02 to 0.05. To this major ingredient is added a minor proportion of a mixture of lithium oxide, silicon dioxide, and, possibly, at least one of barium oxide, calcium oxide, and strontium oxide. For the fabrication of coherently bonded bodies of this composition, as for use as the dielectric bodies of capacitors, the moldings of the mixture of the major ingredient and additive in finely divided form are sintered in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (typically from 1050.degree. to 1200.degree. C.) that the moldings can be co-sintered with base metal electrodes buried therein without difficulties encountered heretofore.
摘要:
A ceramic composition capable of sintering at a sufficiently low temperature to enable the use of a low cost base metal as the electrode material in the fabrication of capacitors. The major ingredient of the composition is expressed as Ba.sub.k-x M.sub.x O.sub.k TiO.sub.2, where M is one or more of magnesium, zinc, strontium, and calcium, and where k, and x are numerals in the ranges of 1.00 to 1.04, and 0.02 to 0.05, respectively. To this major ingredient is added a minor proportion of a mixture of boron oxide, silicon dioxide, and, possibly, at least one of barium oxide, magnesium oxide, zinc oxide, strontium oxide, and calcium oxide. For the fabrication of coherently bonded bodies of this composition, as for use as the dielectric bodies of capacitors, the moldings of the mixture of the major ingredient and additive in finely divided form are sintered in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (typically from 1050.degree. to 1200.degree. C.) that the moldings can be co-sintered with base metal electrodes buried therein without difficulties encountered heretofore.
摘要:
A ceramic composition capable of sintering at a sufficiently low temperature to enable the use of a low cost base metal as the electrode material in the fabrication of capacitors. The major ingredient of the composition is expressed as Ba.sub.k-x-y M.sub.x L.sub.y O.sub.k TiO.sub.2, where M is at least either of magnesium and zinc, L is at least either of strontium and calcium, k, x and y are numerals in the ranges of 1.00 to 1.04, 0.002 to 0.049, and 0.001 to 0.048, respectively, and x+y is a value in the range of 0.02 to 0.05. To this major ingredient is added a minor proportion of a mixture of lithium oxide, silicon dioxide, and, possibly, at least one of barium oxide, calcium oxide, and strontium oxide. For the fabrication of coherently bonded bodies of this composition, as for use as the dielectric bodies of capacitors, the moldings of the mixture of the major ingredient and additive in finely divided form are sintered in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (typically from 1050.degree. to 1200.degree. C.) that the moldings can be co-sintered with base metal electrodes buried therein without difficulties encountered heretofore.
摘要:
A monolithic ceramic capacitor having a higher DC breakdown voltage per unit thickness of the dielectric ceramic body than heretofore. The major ingredient of the ceramic is expressed as {(Ba.sub.1-x-y Ca.sub.x Sr.sub.y)O}.sub.k (Ti.sub.1-z Zr.sub.z)O.sub.2, where x, y, z and k are numerals in the ranges specified herein. To this major ingredient is added a minor proportion of a mixture of boric oxide, silicon dioxide, and lithium oxide. The relative proportions of these additives are also specified. For the fabrication of capacitors having dielectric bodies of the above composition, the moldings of the mixture of the major ingredient and additives in the specified proportions are sintered to maturity in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (1000.degree.-1200.degree. C.) that the moldings can be cosintered with base metal electrodes buried therein.
摘要:
Disclosed is a system for automatically successively inserting a plurality of U-shaped heat transfer tubes into holes of support members of an equipment such as a heat exchanger. The system has fixing means for removably fixing the support members such that the corresponding holes of the support members are axially aligned; gripping means adapted to pick up one of the heat transfer tubes and movable to bring the heat transfer tube toward the holes of supporting members; a positioning means disposed between the gripping means and the fixing means and adapted to hold the gripped heat transfer tube horizontally and to make the same align with the holes in the support members; and control means operatively connected to the gripping means and the positioning means so as to sequentially control the operation of both means in a predetermined sequence. The system operates as follows under the control of the control means. The gripping means grips the heat transfer tube and raises the same. The gripping means is then moved toward the support members while the positioning means supports the heat transfer tube. As the heat transfer tube is inserted deeper into the support members, the support of the tube by the positioning means is released. The gripping of the tube by the gripping means is released and the gripping means is then returned to the position for picking up the next tube, after the completion of the insertion of the heat transfer tube.