Abstract:
A modulation processing method, a UE and a base station are disclosed; herein, the base station transmits a high-layer configuration signaling to the UE, herein the high-layer configuration signaling is used to indicate whether to support a high-order Quadrature Amplitude Modulation (QAM) modulation scheme, the high-order QAM modulation scheme is a modulation scheme of M QAM, and M is a number greater than 64.
Abstract:
Disclosed is a configuration method for an enhanced downlink control channel, which configures K ePDCCH detection clusters for a terminal, including: independently configuring an antenna port index of a corresponding demodulation reference signal (DMRS) at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters; and/or independently configuring a scrambling sequence index of the corresponding DMRS at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters; and/or independently configuring the correlation between a corresponding DMRS scrambling sequence at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters and a DMRS scrambling sequence of a physical downlink shared channel PDSCH, and the like. Disclosed at the same time are a detection method and device for an enhanced downlink control channel, a configuration device for an enhanced downlink control channel, a terminal and an evolved node B. The present invention allows an ePDCCH to have stronger stability and configuration flexibility.
Abstract:
Disclosed in the present invention are a method, a system and a device for selecting Demodulation Reference Signal (DMRS) pattern information, wherein the method includes that a base station selects DMRS pattern information on the basis of a preset first rule, and informs a terminal of the selected DMRS pattern information; and the base station sends a DMRS to the terminal according to the selected DMRS pattern information.
Abstract:
Disclosed is a configuration method for an enhanced downlink control channel, which configures K ePDCCH detection clusters for a terminal, including: independently configuring an antenna port index of a corresponding demodulation reference signal (DMRS) at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters; and/or independently configuring a scrambling sequence index of the corresponding DMRS at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters; and/or independently configuring the correlation between a corresponding DMRS scrambling sequence at the time of detection of each ePDCCH detection cluster or different transmission modes of ePDCCH detection clusters of the K ePDCCH detection clusters and a DMRS scrambling sequence of a physical downlink shared channel PDSCH, and the like. Disclosed at the same time are a detection method and device for an enhanced downlink control channel, a configuration device for an enhanced downlink control channel, a terminal and an evolved node B. The present invention allows an ePDCCH to have stronger stability and configuration flexibility.
Abstract:
Disclosed is a determination, access, sending and processing method and device, base station and terminal. The method for determining au uplink receiving beam and applied to a base station includes: receiving, by using N receiving configurations, a random access signal sent by a terminal, where N is an integer equal to or greater than 2; obtaining respective receiving state information corresponding to the N receiving configurations; and determining a receiving configuration of the uplink receiving beam according to the receiving state information.
Abstract:
A random access method, device, and equipment are disclosed. The method includes: receiving, by a network node, a random access request, wherein the random access request comprises a preamble and a first data block; and sending, by the network node, a random access response.
Abstract:
Disclosed are a signal transmission method and device, and a computer storage, including that: a base station sends or receives a signal within a sweep time interval, an access signal time interval, which is comprised of sweep time blocks sweep time blocks. The access signal time interval includes a downlink access signal time interval and an uplink access signal time interval. The base station sends the signal over the downlink access signal time interval, and receives the signal over the uplink access signal time interval. A terminal sends or receives a signal within the access signal time interval which is comprised of the sweep time blocks. The terminal sends the signal over the uplink access signal time interval, or receives the signal over the downlink access signal time interval.
Abstract:
A wireless communication method includes configuring, by a first communication node, a first set of parameters related to random access procedure by a second communication node on a first communication link between the first communication node and the second communication node, and receiving, from the second communication node, a random access signal that uses the first set of parameters on the first communication link. The first communication node also provides wireless connectivity to a third communication node via a second communication link that shares at least some transmission resources with the first communication link. The first set of parameters includes one or more of a random access format, a random access sequence index set, a random access sequence root sequence index, a random access cyclic shift, and random access time-frequency resources.
Abstract:
Techniques are described to determine timing advance amount. For example, a first device receives, from a second device, a message comprising one or more fields that include information indicative of a communication delay between the first device and the second device. The first device processes the message to use the information for a transmission between the second device and the first device.
Abstract:
Embodiments of the disclosure provide methods and apparatuses for transmitting and receiving a synchronization signal, and a transmission system. A method includes that, a base station determines one or more sets of system parameters, each set of the system parameters including at least one of the following information of a carrier: frequency information, or a frame structure parameter; the base station constructs a synchronization signal of a predetermined structure according to the system parameters; and the base station transmits the synchronization signal to the terminal; the one or more sets of system parameters corresponding to the same predetermined structure. With the embodiments of the disclosure, the problem of excessive complexity in detection of the synchronization signal in the related technology is solved.