Abstract:
An embodiment of a method includes generating a regulated output signal from a regulated intermediate signal in response to a reference signal and the regulated output signal, and generating the regulated intermediate signal from an input signal in response to the regulated output signal and the regulated intermediate signal. By generating one regulated signal (e.g., a regulated output voltage) from another regulated signal (e.g., a regulated intermediate voltage), the magnitude of the ripple component of the one regulated signal may be reduced. Furthermore, by generating the regulated intermediate signal in response to the regulated output signal, the efficiency of the regulation may be increased.
Abstract:
A voltage regulator includes a feedback regulation loop and a drive transistor configured to source current to a regulated output. A transient recovery circuit is coupled to the voltage regulator circuit and includes a first transistor coupled to source current into a control terminal of the drive transistor, wherein the source current is in addition to current sourced in response to operation of the feedback regulation loop. The first transistor is selectively actuated in response to a drop in voltage at the regulated output. The transient recovery circuit further includes a second transistor coupled to sink current from the regulated output. The sink current has a first non-zero magnitude in the quiescent operating mode of the regulator circuit. In response to an increase in voltage at the regulated output, the operation of the second transistor is modified to increase the sink current to a second, greater, non-zero magnitude.
Abstract:
A boost converter includes an input terminal and an output terminal. A first switch is connected between a first intermediate node and a reference potential node. An inductive component is connected between the input terminal and the first intermediate node. A rectifying component is connected between the first intermediate node and a second intermediate node. A multi-state module is connected between the second intermediate node and the output terminal, and has at least a low resistance state and a high resistance state. A control module is coupled to the output terminal, the first switch and the multi-state module, and is operable in response to an output voltage to control the first switch and the multi-state module so that the first switch is open and the multi-state module is in the high resistance state if the output voltage is lower than a threshold value.
Abstract:
An oscillator module includes a first MOS transistor and a capacitor. The capacitor is coupled between a gate and source of the first MOS transistor. The drain of the first MOS transistor receives a first bias current and generates an oscillating output signal. A switching circuit operates in response to the oscillating output signal to selective charge and discharge the capacitor. A current sourcing circuit is configured to generate the bias current. The current sourcing circuit includes a second MOS transistor which has an identical layout to the first MOS transistor and receives a second bias current. A resistor is coupled between a gate and source of the second MOS transistor. The current sourcing circuit further includes a current mirror having an input configured to receive a reference current passing through the resistor and generate the first and second bias currents.
Abstract:
A system and method for error correction coding is configured to dynamically implement one of a number of error correction coding methods during a transmission of data. The error correction coding method is selected based on a measured bit error rate during the transmission of data. The implementation of the error correction coding method is performed without interrupting the data transmission.
Abstract:
A device includes a positive power supply voltage node; and a first operational amplifier including a first input, a second input, and an output coupled to the second input. The device further includes a first resistor coupled between the second input of the first operational amplifier and the positive power supply voltage node; a second resistor coupled between the output of the first operational amplifier and an electrical ground, and is configured to receive a same current flowing through the first resistor; a second operational amplifier including a first input coupled to the second resistor, and an output coupled to an output node; and a third resistor coupled between the electrical ground and a second input of the second operational amplifier.
Abstract:
An amplifier circuit includes an amplifier unit that is configured to receive an input signal and generate a switching output signal. A level shifter is configured to shift the amplitude of the input signal to have a shifted amplitude that is proportional to a peak-to-peak amplitude of the switching output signal.
Abstract:
An integrated circuit includes a DC-DC converter, which includes an inductor; a first transistor coupled to the inductor and configured to pass an inductor current to the inductor; and a second transistor forming a current mirror with the first transistor. The integrated circuit further includes an operational amplifier. The operational amplifier includes a first input node and a second input node. The first input node is configured to couple to a drain of the first transistor when the first transistor is turned on, and decoupled from the drain of the first transistor when the first transistor is turned off. The second input node is coupled to a drain of the second transistor.
Abstract:
A clamping circuit for a class AB amplifier includes a reference voltage circuit, four NPN Darlington transistors having inputs coupled to the reference voltage circuit, and outputs for providing four clamped voltages, and a split NPN Darlington transistor having an input coupled to the reference voltage circuit, and four separate outputs for providing four AC ground voltages.
Abstract:
An integrated circuit includes a saw-tooth generator including a saw tooth node configured to have a saw-tooth voltage generated thereon; and a first switch having a first end connected to the saw tooth node. The integrated circuit further includes a second switch coupled between an output node and an electrical ground, wherein the first switch and the second switch are configured to operate synchronously. A first current source is connected to the saw tooth node. A second current source is connected to the output node.