Abstract:
A system and method for producing an intensity modulated arc therapy (“IMAT”) treatment plan are provided. A plurality of segmentations are generated, from which the IMAT treatment plan is determined. Apertures within each segmentation are ordered by minimizing the total leaf movement between pairs of segmentations in adjacent angles, during which corresponding minimum total leaf movement values between such pairs are calculated. From these segmentations, a network model is used to select those segmentations to be used in the IMAT treatment plan. The apertures in the selected segmentations are then modified by minimizing total leaf movement relative to the selected segmentations, and subject to physical constraints such as a maximum leaf movement constraint or interdigitation constraint. Segmentation errors in the modified segmentations are then locally minimized using a network model and a row-non-convexity measure to determine the order in which apertures are to be optimized.
Abstract:
A system and method for producing an intensity modulated arc therapy (“IMAT”) treatment plan are provided. A plurality of segmentations are generated, from which the IMAT treatment plan is determined. Apertures within each segmentation are ordered by minimizing the total leaf movement between pairs of segmentations in adjacent angles, during which corresponding minimum total leaf movement values between such pairs are calculated. From these segmentations, a network model is used to select those segmentations to be used in the IMAT treatment plan. The apertures in the selected segmentations are then modified by minimizing total leaf movement relative to the selected segmentations, and subject to physical constraints such as a maximum leaf movement constraint or interdigitation constraint. Segmentation errors in the modified segmentations are then locally minimized using a network model and a row-non-convexity measure to determine the order in which apertures are to be optimized.
Abstract:
A method of multileaf collimator (MLC) leaf positioning in tracking-based adaptive radiotherapy is provided. The method includes determining a radiotherapy beam pattern by transforming a treatment beam plan into radiotherapy beam coordinates, determining a dose discrepancy between the radiotherapy beam pattern and a deliverable MLC aperture, where the dose discrepancy includes a sum of an overdose cost and an underdose cost to a treatment volume, and minimizing the dose discrepancy, where the dose discrepancy minimization provides a determined deliverable MLC aperture for the radiotherapy beam.
Abstract:
Methods and apparatus are provided for planning and delivering radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. In some embodiments the radiation source is moved continuously along the trajectory while in some embodiments the radiation source is moved intermittently. Some embodiments involve the optimization of the radiation delivery plan to meet various optimization goals while meeting a number of constraints. For each of a number of control points along a trajectory, a radiation delivery plan may comprise: a set of motion axes parameters, a set of beam shape parameters and a beam intensity.
Abstract:
A radiotherapeutic apparatus comprises a source able to emit a beam of therapeutic radiation along a beam axis, a multi-leaf collimator arranged to collimate the beam to a desired shape, wherein the source is rotateable about a rotation axis that is substantially orthogonal and intersects with the beam axis thereby to describe an arc around that axis, and further comprises a control means able to control the dose/time rate of the source, the rotation speed of the source, and the multi-leaf collimator position. The control means is arranged to receive a treatment plan in which the arc is divided into a plurality of notional arc-segments, and specifying the total dose for the arc-segment and a Start and end MLC position. It then controls the source in accordance with that plan over an first arc-segment such that at least one of the rotation speed and dose rate are constant and the multi-leaf collimator changes shape, and a second arc segment such that at least one of the rotation speed and dose rate are constant at a level different to the constant level adopted during the first arc-segment. It achieves this by calculating the total time required for the arc segment for a plurality of factors including an MLC leaf movement from a prescribed position at the start of the arc-segment to a prescribed position at the end of the arc-segment, at a maximum leaf speed, rotation of the source from the start to the end of the arc-segment at a maximum source rotation speed, delivery of the dose at a maximum dose rate per time, selecting the factor dictating the longest time, and Controlling the apparatus so that the selected factor operates at its respective maximum and the remaining factors are operated at a reduced rate selected to match that longest time, wherein the total time required for the arc segment for at least one factor relating to a moving geometry item is the greater of (a); a time required to complete the segment at a continuous defined upper speed for the geometry item and (b) a time required to accelerate the geometry item until it is travelling at the defined upper speed. Generally, the time required to accelerate the geometry item to the defined upper speed will include a time to accelerate the geometry item to that speed, and a further time to accelerate the geometry item beyond that speed and subsequently decelerate it until travelling at that speed.
Abstract:
The invention is directed to a radiation therapy method, and in particular, to a method of conducting an intensity modulated arc therapy (IMAT). The invention provides a planning technique that translates traditional static fixed-field IMRT plans into deliverable IMAT plans and allows IMAT to be realized as a routine clinical delivery technique.
Abstract:
The invention relates to a method and device for operating collimator (1) for limiting a beam of high-energy radiation (2) which, starting from an essentially point-shaped radiation source (3), is directed onto an object (4) to be treated and which is used especially for stereotactic, conformal radiation therapy of tumors, wherein the collimator (1) has an iris diaphragm (5) as a beam-limiting means. For such a collimator (1), a high degree of shielding for minimal overall height and with a variable opening size of the diaphragm opening (12) is achieved, in that the iris diaphragm (5) has at least three diaphragm leaves (6, 6′, 6″, or 7, 7′, 7″, 7′″, or 8, 8′, 8″, 8′″, 8″″, or 9, 9′, 9″, 9′″, 9″″, 9′″″) which have touching side surfaces (10) enclosing the same angle (α), wherein the diaphragm leaves (6, 6′, 6″, or 7, 7′, 7″, 7′″, or 8, 8′, 8″, 8′″, 8″″, or 9, 9′, 9″, 9′″, 9″″, 9′″″) open up a beam-limiting opening (12) such that a sliding movement (13) along the side surfaces (10) takes place by a number of diaphragm leaves (6, 6′, 6″, or 7, 7′, 7″, 7′″, or 8, 8′, 8″, 8′″, 8″″, or 9, 9′, 9″, 9′″, 9″″, 9′″″) which is reduced by at most one.
Abstract:
Systems and methods of controlling the leaves of an aperture in radiation treatment are disclosed. In some embodiments, these systems and methods allow the delivery of different radiation fluences to different parts of a treatment volume in a single rotation of the aperture around the treatment volume. In some embodiments, different radiation fluences are achieved by radiating different parts of the treatment volume from opposing positions of the aperture around the treatment volume. In some embodiments, different radiation fluences are achieved by assigning different leaf pairs to radiate different parts of the treatment volume.
Abstract:
The present invention provides an intensity modulated radiation therapy (IMRT) method for treating a target region that minimizes the tongue and groove effect. By minimizing that effect, striping in the final delivered fluence is reduced, which improves the overall quality of the radiation delivery. In the method, compensating functions Ci(x) are added to leaf coordinates ai(x) and bi(x) for all of the leaf pairs i in a leaf sequence algorithm, where Ci(x) is chosen to match the mechanical limitations of the MLC and to minimize non-weighted or weighted sums of the tongue and groove effects, where the weighting is time-dependent, position-dependent, or time- and position-dependent, or to minimize the total treatment time, changes to the original MLC sequence, or the tongue and groove effect distribution variance in spatial or temporal coordinates.
Abstract:
A deliverable four dimensional (4D) intensity modulated radiation therapy (IMRT) planning method is disclosed, for delivery using a linear accelerator with a dynamic multi-leaf collimator (DMLC). A 4D computed tomography (CT) scan is used for segmenting tumor anatomy on a reference phase of periodic motion of the tumor. Deformable registration of the 4D CT data is used to generate corresponding anatomical structures on other phases. Preferably, the collimator for each beam position is aligned using the gross tumor volume (GTV) centroid motion corresponding to the periodic motion of the tumor, as determined from the two dimensional (2D) projection of a given beam position. A deliverable IMRT plan is created on the 4D CT image set in which the MLC leaf positions and beam on/off status can vary as a function of respiratory phase by solving a four dimensional optimization problem. The mechanical constraints of the MLC leaves are included in the optimization.