Abstract:
An application apparatus includes a nozzle device (20) injecting a damping material from a nozzle hole (20a) to a vehicle body, an articulated robot (21) moving the nozzle device (20) relative to the vehicle body, a supply section including a supply pump (22), and a supply passage (27), and continuously driving the supply pump (22) to continuously supply the damping material from the supply pump (22) to the supply passage (27) in a substantially uniform amount, a return passage (33) branched from the supply passage (27) and returning the damping material to the supply pump (22), and a gun (32) and a return valve (34) switching a supply destination of the damping material between the nozzle hole (20a) and the return passage (33) based on information on applying the damping material to the vehicle body.
Abstract:
A buffer unit is configured to store and transfer adhesive particulate to at least one adhesive melter. The buffer unit includes a buffer bin defining an interior space configured to hold a bulk supply of adhesive particulate with an agitator plate positioned within the housing at a non-horizontal orientation. A vibration generating mechanism is coupled to the agitator plate so that vibration is transmitted into the adhesive particulate to form a flow of fluidized adhesive particulate which flows toward at least one pump inlet. The buffer unit breaks up clumps of coalesced adhesive particulate to avoid clogging the pump inlet, while also ensuring that all adhesive particulate in the buffer bin can be removed at the pump inlet. Additionally, makeup air used by pumps to generate vacuum at the pump inlet does not need to be drawn through the entire bulk supply of adhesive particulate.
Abstract:
The purpose is to provide a discharge system which can minimize wear of a connecting part of a discharging device and a refilling device which is caused under the influence of particulate matters contained in fluid even if connection and disconnection for refilling the discharging device with the fluid is repeated. A discharge system includes a discharging device capable of discharging the fluid, and a refilling device capable of refilling the discharging device with the fluid. The fluid is suppliable from the refilling device side to the discharging device side by inserting one of a discharge-side coupler provided to the discharging device side and a refill-side coupler provided to the refilling device side into the other to connect the discharging device to the refilling device. A clearance size d formed between the discharge-side coupler and the refill-side coupler is determined based on the particle size distribution of the particulate matters that constitutes the fluid.
Abstract:
A discharge apparatus 1 comprises a feeder part 41 which is provided on a flow path of a discharge material from a supply part 10 to a nozzle 50 and feeds the discharge material in the flow path at a predetermined flow rate from the supply part 10 toward the nozzle 50 and a plurality of pressurizers 31, 32 provided in parallel to each other on the flow path and each having a function of temporarily storing the discharge material in a storage space and a function of pressurizing the discharge material stored in the storage space and feeding the discharge material under pressure to the feeder part 41. The plurality of pressurizers 31, 32 operate complementarily manner, thereby a constant pressure is applied to the discharge material fed to the feeder part 41.
Abstract:
A liquid dispensing apparatus (1) includes a liquid contact member (2) that has measuring bores (11, 11). A first piston (3) slides in the first measuring bore (11) and a second piston (3) sliding in the second measuring bore (11). A supply channel (5) communicates with a storage unit (17). An ejection channel (6) communicates with a nozzle (18). A switching valve (4) is disposed in a space in the liquid contact member (2), and that has a first position and a second position. A valve driving mechanism (8) operates the switching valve (4). A piston driving mechanism (9) operates an arm (19) connected to the first and second pistons. The first and second measuring bores are arranged to oppose to each other on both sides of the switching valve (4), and the supply channel (5) and the ejection channel (6) are arranged adjacent to the switching valve.
Abstract:
A coating apparatus includes: a slit nozzle including a retention chamber that retains the coating material; a moving mechanism that moves the slit nozzle; a pressure regulation unit that regulates a pressure inside the retention chamber; and a control unit that controls the moving mechanism and the pressure regulation unit to relatively move the slit nozzle with respect to the substrate while changing the pressure inside the retention chamber toward an atmospheric pressure from a negative pressure, wherein the control unit is configured to control the pressure regulation unit so that a change in the pressure inside the retention chamber in a start zone including a coating start position and an end zone including a coating end position becomes slower than a change in the pressure inside the retention chamber in a middle zone except the start zone and the end zone.
Abstract:
An application apparatus includes a nozzle device (20) injecting a damping material from a nozzle hole (20a) to a vehicle body, an articulated robot (21) moving the nozzle device (20) relative to the vehicle body, a supply section including a supply pump (22), and a supply passage (27), and continuously driving the supply pump (22) to continuously supply the damping material from the supply pump (22) to the supply passage (27) in a substantially uniform amount, a return passage (33) branched from the supply passage (27) and returning the damping material to the supply pump (22), and a gun (32) and a return valve (34) switching a supply destination of the damping material between the nozzle hole (20a) and the return passage (33) based on information on applying the damping material to the vehicle body.
Abstract:
A fluid dispensing valve comprises a module, a discharge orifice, a valve stem and a filter. The module has a fluid inlet, a fluid outlet and a fluid passage connecting the fluid inlet and the fluid outlet. The discharge orifice is in fluid communication with the fluid outlet. The valve stem extends into the fluid passage to close-off the discharger orifice. The filter is disposed within the fluid passage and surrounds the valve stem.
Abstract:
A heating system includes an air motor with an exhaust; a pump for a hot melt dispensing system and driven by the air motor; and a shroud enclosing at least a portion of the air motor and the pump to direct heat from the pump to the exhaust of the air motor.
Abstract:
A hot melt dispensing system includes a hopper, a delivery line, a shaker, and an air supply line. The hopper stores hot melt pellets and the delivery line delivers the hot melt pellets from the hopper. The shaker agitates the hot melt pellets. The air supply line supplies air that flows through the shaker to produce vibration and additionally flows through the delivery line to create a vacuum that draws the hot melt pellets through the delivery line.