Abstract:
The subject invention reveals a distance measuring device comprising: a sensing module, a target module, and an evaluating module, wherein the sensing module and the target module are mountable so as to execute a movement with respect to each other along a movement trajectory, wherein the target module comprises a magnetic field generating element having a magnetic pole axis, wherein the sensing module comprises a first magnetic field sensing array being arranged distant to the movement trajectory. The sensing module and the target module can advantageously be situated within the pressurizable chamber of an air spring which is defined by (contained within) a first mounting plate, a second mounting plate, and a flexible member of the air spring.
Abstract:
An end closure (260) is dimensioned for securement to a gas spring end member (204). The end closure is dimensioned to form a substantially fluid-tight, friction-fit connection with a flexible spring member (206) that is in an at least substantially-cured condition. The end closure (260) can include an end wall portion (298), a first side wall portion (300) that extends from along the end wall portion (298) and a second side wall portion (304) that is disposed radially inward of the first side wall portion and is axially-offset relative to the end wall portion. The second side wall portion at least partially forms a mounting seat that is dimensioned to form a substantially fluid-tight, friction-fit connection between at least the second side wall portion of the end closure (260) and the flexible spring member (204). A gas spring assembly as well as a suspension system and methods of assembly are also included.
Abstract:
A closing cover assembly for an air spring includes a first portion defining a first internal space constructed and arranged to receive a portion of an air spring. A second portion is integral with and extends from the first portion. The second portion defines a second internal space. A passageway connects the first internal space with the second internal space. A pressure retention valve having a main body is received in the second internal space, with the second portion of the cover defining an outer protective housing for the main body of the pressure retention valve.
Abstract:
Various systems and methods for automated air suspension pressure drop are disclosed. In one embodiment, a method for decreasing air pressure in an air spring is provided, comprising: providing a trailer, the trailer comprising: a first axle and a second axle, wherein at least one of the first axle and the second axle is operatively connected to at least one air spring; providing a strain gauge operatively connected to the trailer, wherein the strain gauge is configured to identify a lateral bending strain in the trailer; identifying the presence of the lateral bending strain in the trailer, wherein the lateral bending strain is about an axis substantially normal to the trailer's plane of travel; communicating the presence of the lateral bending strain in the trailer to a control unit operatively connected to the at least one air spring; and decreasing the air pressure in the at least one air spring.
Abstract:
A level control for vehicles has at least one air spring cushioning a vehicle body relative to a vehicle axle. A compressed air generator is connected to the air spring by an air dryer and to the atmosphere by a check valve opening in the intake direction of the generator. The air spring can be connected to the atmosphere for discharge via a pneumatically controllable first directional valve. The air spring pressure is applied to a pneumatic control input of the first directional valve via a second controllable directional valve. The input of the first directional valve can be connected to the atmosphere for ending discharge of the spring. A line with a compressed air accumulator branches off from the air spring supply line via a first changeover valve. The accumulator is connected to the intake side of the generator via a second changeover valve.
Abstract:
A method of positioning a vehicle chassis of a stationary vehicle in approximate alignment with a predetermined datum is provided. The vehicle has an axle and a fluid suspension system. The fluid suspension system include a control device, a pressurized fluid source and an exhaust passage. The pressurized fluid source and the exhaust passage are in fluid communication with the plurality of fluid suspension members through the control device. The vehicle also includes an electronic control unit operatively associated with the control device. The method including step of providing alignment sensor supported on the chassis for outputting a signal indicative of the orientation of the chassis to the electronic control unit and acquiring a signal output by the alignment sensor. Another step includes comparing the signal from the alignment sensor to alignment data stored in the electronic control unit. A further step includes selectively operating the control device to permit fluid communication between one or more of the fluid suspension members and one of the pressurized fluid source and the fluid exhaust until the signal from the alignment sensor approximately corresponds to the alignment data. A system for performing the method is discussed.
Abstract:
A method of positioning a vehicle chassis of a stationary vehicle in approximate alignment with a predetermined datum is provided. The vehicle has an axle and a fluid suspension system. The fluid suspension system includes a control device, a pressurized fluid source and an exhaust passage. The pressurized fluid source and the exhaust passage are in fluid communication with the plurality of fluid suspension members through the control device. The vehicle also includes an electronic control unit operatively associated with the control device. The method including steps of providing an alignment sensor supported on the chassis for outputting a signal indicative of the orientation of the chassis to the electronic control unit and acquiring a signal output by the alignment sensor. Another step includes comparing the signal from the alignment sensor to alignment data stored in the electronic control unit. A further step includes selectively operating the control device to permit fluid communication between one or more of the fluid suspension members and one of the pressurized fluid source and the fluid exhaust until the signal from the alignment sensor approximately corresponds to the alignment data. A system for performing the method is also discussed.
Abstract:
According to a method for controlling the air volume in a closed pneumatic spring system of a vehicle, an air-powered pump supplies at least two pneumatic springs and/or a compressed air reservoir with a specific air volume as needed such that the air pressure prevailing in the respective pneumatic spring and/or the compressed air reservoir is at a level which causes a vehicle body resting on the pneumatic spring to be positioned at a desired distance from the roadway or the vehicle axle. In order to obtain largely constant control velocities at different load conditions of the vehicle while using a smaller compressed air reservoir than in previously known systems, the pneumatic spring pressure (P) is measured in at least two of the pneumatic springs, the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle is determined, the axle load (AL) of at least one vehicle axle is determined from the pneumatic spring pressure (P) and the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle, a target system air volume (PV_SOLL) is determined in accordance with the respective axle load (AL), and the actual system air volume is adjusted to said target system air volume by actuating the air-powered pump or a relief valve.
Abstract:
A method of positioning a vehicle chassis of a stationary vehicle in approximate alignment with a predetermined datum is provided. The vehicle has an axle and a fluid suspension system. The fluid suspension system includes a control device, a pressurized fluid source and an exhaust passage. The pressurized fluid source and the exhaust passage are in fluid communication with the plurality of fluid suspension members through the control device. The vehicle also includes an electronic control unit operatively associated with the control device. The method including steps of providing an alignment sensor supported on the chassis for outputting a signal indicative of the orientation of the chassis to the electronic control unit and acquiring a signal output by the alignment sensor. Another step includes comparing the signal from the alignment sensor to alignment data stored in the electronic control unit. A further step includes selectively operating the control device to permit fluid communication between one or more of the fluid suspension members and one of the pressurized fluid source and the fluid exhaust until the signal from the alignment sensor approximately corresponds to the alignment data. A system for performing the method is also discussed.
Abstract:
A sensor for a height control system in a trailing arm suspension uses a transducer to detect changes in position of a trailing arm relative to a vehicle and sends a proportional signal to a microprocessor that, in turn, actuates a pneumatic valve operably connected to an air spring between the trailing arm and the vehicle. The transducer includes an optical bridge, a variable capacitor, or a flexible variable resistor.