Abstract:
The present invention relates to a sensor module comprising a relative displacement sensor and an acceleration sensor, and a damper equipped with the same. The damper comprises a cylinder which is formed with a hollow portion therein; a piston rod which is inserted through an upper portion of the cylinder; a piston valve which is connected with an end of the piston rod so as to reciprocate in the cylinder, and which is formed with a fluid passing hole formed to be passed through the piston valve up and down; a rod guide which air-tightly closes an upper end of the cylinder and has a though-hole in which the piston rod is inserted; and a sensor module which is provided with an acceleration sensor for detecting an acceleration at least in a z-axial direction and a displacement sensor for detecting a displacement of the piston rod and which is coupled with the rod guide.
Abstract:
A snowplow control system is provided that uses the distance between the vehicle frame and the ground or wheel axle as an input to a feedback loop useable to provide increased control over the pressure exerted by the plow blade. The control system allows the plow to operate in various modes of operation including a manual mode, a float mode, and a down pressure mode. The control system interfaces with the vehicle operator by way of a controller that is preferably operable from within the cabin of the vehicle.
Abstract:
A chassis component (1) for a wheel suspension having at least two pivot points (3, 4), at least one connecting structure (7) which interconnects the pivot points (3, 4) with one another, and at least one sensor (9). The at least one sensor (9) is embodied as a piezoresistive thin film (19) arranged on a section of a surface (8) of the connecting structure (7). A thin film interconnects contact points (15, 16), of at least two conductive sections (13, 14) which are integrated in the connecting structure (7), to one another.
Abstract:
An air spring (2) essentially includes two end elements (4, 6) and an electrically conductive rolling-lobe flexible member which is pressure-tightly arranged therebetween and is made of a flexible elastomeric electroconductive material (14). A reinforcement (16) formed by two cord fiber plies (16a, 16b), which are made of fibers (18), are vulcanized into the flexible member. In order to determine the height (h) of the spring, preferably, the two cord fabric plies (16a, 16b) are provided with a number of highly conductive fibers (18a) which are arranged at the beginning and the end of each ply in a parallel direction to each other, thereby forming two conductive strips (24a, 24b). The conductive strips (24a, 24b) are disposed oppositely to each other and are electrically connected at the end of the rolling-lobe flexible member (8) in such a way that a conductive loop (24) is formed and each strip is used as an element in a branch for an alternating-current measuring bridge (28). The filaments (20) of individual fibers (18) or only certain filaments (20a) of the fibers (18) can be electrically conductive. In addition to determining the height (h) of the spring in a motor vehicle, the inventive device can also be used for determining the air pressure in the flexible member of the air spring (2), the temperature (T) of the flexible member walls and other measurement quantities.
Abstract:
A wheeled vehicle includes a bottom chassis; a top chassis, which is coupled to the bottom chassis so that it is able to turn about a vertical axis; an operating arm coupled to the top chassis; an axle, which is coupled to the bottom chassis so that it can oscillate about a longitudinal axis of the vehicle; a plurality of wheels disposed on the axle; blocking means disposed between the bottom chassis and the axle for angularly blocking the axle about the longitudinal axis with respect to the bottom chassis; a circuit to activate the blocking means and inhibit oscillation of the axle about the longitudinal axis; and an angle sensor for supplying a signal indicative of the angular position of the operating arm about the vertical axis with respect to the bottom chassis.
Abstract:
A hitch control system for a work vehicle combines a front suspension position signal, a hitch load signal and a hitch position signal to generate a valve command signal that controls hitch position so as to alleviate pitching and maximize front wheel ground contact time.
Abstract:
A sensor for a height control system in a trailing arm suspension uses a transducer to detect changes in position of a trailing arm relative to a vehicle and sends a proportional signal to a microprocessor that, in turn, actuates a pneumatic valve operably connected to an air spring between the trailing arm and the vehicle. The transducer includes an optical bridge, a variable capacitor, or a flexible variable resistor.
Abstract:
A snowplow control system is provided that uses the distance between the vehicle frame and the ground or wheel axle as an input to a feedback loop useable to provide increased control over the pressure exerted by the plow blade. The control system allows the plow to operate in various modes of operation including a manual mode, a float mode, and a down pressure mode. The control system interfaces with the vehicle operator by way of a controller that is preferably operable from within the cabin of the vehicle.
Abstract:
A suspension control unit as well as a control valve for such unit are provided which are incorporated in a computerized suspension system which automatically and continuously monitors and control's a vehicle's ride performance. The suspension control unit is composed of an actuator and a fluid control unit. A valve is coupled to the actuator for controlling the fluid pressure within the actuator. The valve has an annular body having a side inlet passage and an outlet opening in communication with the reservoir. A poppet driven by a solenoid is slideably fitted within the body wherein the poppet can slide between a first position blocking flow to the outlet opening and a second position not blocking the flow to the outlet opening. The poppet has a shoulder that is exposed to the inlet. Fluid pressure to the inlet of the valve acts on the differential area of the poppet to produce an poppet retracting force which is opposed by the force of an electrically adjustable solenoid. When pressure reaches the solenoid setting, the poppet is retracted to the open position, permitting flow through the valve.
Abstract:
An elastic support for on-board suspension systems of a motor-vehicle includes at least one body formed of polymeric elastomeric material supplemented with carbon-based nanofillers. An outer surface is provided with one or more piezo-resistive areas where a polymeric material supplemented with carbon-based nanofillers has been made locally piezo-resistive by laser irradiation so as to define one or more electric deformation sensors configured to detect the load applied on the elastic support.