Abstract:
Whipstocks and deflectors comprising a degradable composition, and methods of using same are described. In one embodiment the degradable composition consists essentially of one or more reactive metals in major proportion, and one or more alloying elements in minor proportion, with the provisos that the composition is high-strength, controllably reactive, and degradable under defined conditions. Methods of using degradable whipstocks in oilfield operations are also described. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims. 37 C.F.R. 1.72(b).
Abstract:
Magnesium based composite powder that is a starting raw material to manufacture a Mg2Si dispersion type of magnesium based composite material comprises Mg based powder (7) that is a main component constituting the matrix of a magnesium alloy, and Mg2Si powder attached to the surface of the Mg based powder (7) through a binder (9).
Abstract translation:作为制造Mg 2 S 2 Si分散型镁基复合材料的起始原料的镁基复合粉末包括作为构成镁合金基体的主要成分的Mg系粉末(7) 和Mg 2 Si粉末,通过粘合剂(9)附着在Mg基粉末(7)的表面上。
Abstract:
A high-strength and high-toughness magnesium based alloy contains, by weight, 1 to 8% rare earth element and 1 to 6% calcium and the maximum crystal grain diameter of magnesium constituting a matrix is not more than 30 μm. At least one intermetallic compound (6) of rare earth element and calcium has a maximum grain diameter of 20 μm or less and it is dispersed in a crystal grain boundary (5) and a crystal grain (4) of magnesium of the matrix.
Abstract:
A combine bulk storage/single stage metal hydride compressor, a hydrogen storage alloy therefore and a hydrogen transportation/distribution infrastructure which incorporates the combine bulk storage/single stage metal hydride compressor.
Abstract:
Hydrogen propelled fuel cell vehicle system designs that reduce the relative cost of releasing hydrogen from hydrogen storage alloys by providing and/or utilizing secondary sources of heat to supply the heat of desorption of stored hydrogen. The secondary source can include combusting conventional secondary (non-hydrogen) fuels. The fuel supply system uses fundamentally new magnesium-based hydrogen storage alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of hydrogen to power fuel cell vehicles. These exceptional alloys have remarkable hydrogen storage capacity of over 7 weight % coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 1.5 minutes at 300° C. and a cycle life of at least 2000 cycles without loss of capacity or kinetics.
Abstract:
Atomically engineered hydrogen storage alloys which include a spectrum of hydrogen bonding energies and multiple hydride phases which extends and enhances their storage capacity at high pressures and high pressure hydrogen storage units which contain a variable amount of these hydrogen storage alloys therein to enhance the storage capacity of the unit beyond that obtainable by conventional alloys or pressurized hydrogen gas alone.
Abstract:
A complete infrastructure system for the generation, storage, transportation, and delivery of hydrogen which makes a hydrogen ecosystem possible. The infrastructure system utilizes high capacity, low cost, light weight thermal hydrogen storage alloy materials having fast kinetics. Also, a novel hydrogen storage bed design which includes a support/heat-transfer component which is made from a highly porous, high thermal conductivity, solid material such as a high thermal conductivity graphitic foam. Finally a material including at least one particle having atomically engineered local chemical and electronic environments, characterized in that the local environments providing bulk nucleation.
Abstract:
A complete infrastructure system for the generation, storage, transportation, and delivery of hydrogen which makes a hydrogen ecosystem possible. The infrastructure system utilizes high capacity, low cost, light weight thermal hydrogen storage alloy materials having fast kinetics. Also, a novel hydrogen storage bed design which includes a support/heat-transfer component which is made from a highly porous, high thermal conductivity, solid material such as a high thermal conductivity graphitic foam. Finally a material including at least one particle having atomically engineered local chemical and electronic environments, characterized in that the local environments providing bulk nucleation.
Abstract:
A method for stably producing metal beryllium pebbles each ranging from 0.1 to 1.8 mm in particle diameter and 0.05 to 0.6 mm in crystal grain average diameter. The metal beryllium pebbles obtained by the invention are excellent not only in tritium emission power but also in anti-swelling property, and are thus useful as a material for nuclear fusion reactors. The metal beryllium pebbles can also be advantageously employed for aerospace structural materials and the like, by utilizing their light weight and high melting point properties.
Abstract:
Disclosed is a practical aluminum-based alloy containing 1 to 99 weight percent beryllium and improved methods for the investment casting of net shape aluminum-beryllium alloy parts.