Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the, working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
Abstract:
A lightwave oven cooking method and apparatus uses pulsed power applied to a plurality of high-power lamps which provides radiant energy in the electromagnetic spectrum and having wavelengths including the visible and near-visible ranges. Irradiation is applied to the food by applying power to the lamps for a specified period of time without vaporizing all of the surface water on the food, and then applying reduced irradiation to the food to complete the cooking cycle without producing an overly browned surface which inhibits deep penetration of radiation in the near-visible and visible ranges. The reduced power can be at a reduced duty cycle which can be done in a sequence of one or more reducing steps in the duty cycle or a continuous reduction of the duty cycle of the power applied to the lamps. A change in color, in water vapor concentration emitted from the surface, in the food temperatures and/or in the generation of steam to a predetermined degree can be sensed to reduce power.
Abstract:
High precision force imparting and/or a force (including weight) and displacement measuring/indicating device which includes a multi-dimensional capacitor transducer system. The multi-dimensional transducer includes a first capacitive transducer for imparting force or movement and/or detecting force, weight or position in a first direction and a second capacitive transducer for imparting force or movement and/or detecting force, weight or position in a second direction. The multi-dimensional transducer may be used to provide in situ imaging in micro-mechanical test systems.
Abstract:
A micromachined accelerometer includes two capacitors comprising a pair of fixed capacitor electrodes and an intermediate movable proof mass serving as a common electrode which is displaced under acceleration to differentially vary the capacitances. A circuit holds the common electrode at a bias voltage and a switching circuit rapidly alternating between two phases separately connects the fixed electrodes to a main reference voltage and to ground during a first phase and to a common intermediate voltage during a second phase. A charge amplifier senses capacitance changes due to acceleration to produce an output voltage and an attenuating amplifier responsive to the output voltage produces the common intermediate voltage. A compensation servo circuit responsive to the output voltage generates the bias voltage which controls an electrostatic balancing force which is applied to the proof mass during the first phase to maintain the proof mass near a rest position. Alternatively, the bias voltage is a constant value for open loop operation.
Abstract:
A fixed reference capacitance (10) and a variable, pressure sensitive capacitance (12) are defined by a common conductive layer (14), and a common dielectric layer (16). A peripheral conductive layer 20 completes the reference capacitor and a central conductive layer (22) completes the variable capacitor. A peripheral supporting layer or structure (18) prevents the thickness or the dielectric constant of the dielectric layer peripheral portion but not the central portion from varying in response to pressure changes. In this manner, the reference and variable capacitors may be placed closely adjacent without pressure isolating the reference capacitor. An oscillator (30) provides an AC, such as square wave, driving signal to first and second temporary storage capacitors (52, 54). A bridge (70) of CMOS transistors selectively connects the first and second storage capacitors with the reference and variable capacitors. A gating control circuit (90) selectively gates the CMOS transistors of the bridge conductive and nonconductive such that during a positive square wave half cycle, the first storage capacitor is connected with the reference capacitor and the second storage capacitor is connected with the variable capacitor and during a negative half cycle the first storage capacitor is connected with the variable capacitor and the second storage capacitor is connected with the reference capacitor.
Abstract:
Measuring apparatus including a capacitive transducer which comprises members between which a first capacitance increases and a second capacitance simultaneously decreases in accordance with the magnitude of the physical quantity being measured. The first and second capacitances are connected as two arms of a four-arm bridge having as each of the two other arms a charge amplifier. Means are provided for applying an AC carrier waveform to the junction of the first and second capacitances and for demodulating the differential output of the two charge amplifiers to give an output representative of the magnitude of the physical quantity.
Abstract:
A capacitor is described, the capacity of which varies with pressure applied thereto. The capacitor may have sheet metal electrodes separated by natural rubber layers, one at least of the electrodes being perforated so that when pressure is applied to the capacitor the rubber can deform and the electrodes can move closer together. The capacitor may be connected in a bridge circuit which then gives an output dependent on the pressure applied. The capacitor is useful in measuring wheel and axle loads.
Abstract:
According to an aspect, a force sensor includes: a first electrode; a second electrode; a first conductor facing the first electrode in a first direction; a second conductor facing the second electrode in the first direction; a first elastic member and a second elastic member arranged between the first electrode and the first conductor; and the first elastic member arranged between the second electrode and the second conductor. The first elastic member and the second elastic member have degrees of compression with respect to force thereon that are different depending on temperature.