摘要:
A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features separated by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Conductive features are defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features is less than a wavelength of light used in a photolithography process for their fabrication.
摘要:
A restricted layout region includes a diffusion level layout including a number of diffusion region layout shapes to be formed within a substrate portion of a semiconductor device. The diffusion region layout shapes define at least one p-type diffusion region and at least one n-type diffusion region. A gate electrode level layout is defined above the substrate portion to include linear-shaped layout features placed to extend in only a first parallel direction. Adjacent linear-shaped layout features that share a common line of extent in the first parallel direction are separated from each other by an end-to-end spacing that is substantially equal across the gate electrode level layout and that is minimized to an extent allowed by a semiconductor device manufacturing capability. A total number of the PMOS transistor devices and the NMOS transistor devices in the restricted layout region of the semiconductor device is greater than or equal to eight.
摘要:
A restricted layout region in a layout of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes. The plurality of diffusion region layout shapes are defined in a non-symmetrical manner relative to a centerline defined to bisect the diffusion level layout. A gate electrode level layout is defined to include linear-shaped layout features placed to extend in only a first parallel direction. Adjacent linear-shaped layout features that share a common line of extent in the first parallel direction are separated from each other by an end-to-end spacing that is substantially equal across the gate electrode level layout and that is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction.
摘要:
A restricted layout region is defined to include a diffusion level layout that includes a plurality of diffusion region layout shapes to be formed within a portion of a substrate of a semiconductor device. The plurality of diffusion region layout shapes are defined in a non-symmetrical manner relative to a centerline defined to bisect the diffusion level layout of the restricted layout region. The plurality of diffusion region layout shapes include a p-type diffusion region layout shape and an n-type diffusion region layout shape separated by a central inactive region. A gate electrode level layout is defined include a number of rectangular-shaped layout features placed to extend in only a first parallel direction, and defined along at least four different lines of extent in the first parallel direction. The restricted layout region corresponds to an entire gate electrode level of a cell layout.
摘要:
A semiconductor device is disclosed as having a substrate portion that includes a plurality of diffusion regions that include at least one p-type diffusion region and at least one n-type diffusion region. A gate electrode level region is formed above the substrate portion to include a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature. Each of the conductive features within the gate electrode level region has a width less than a wavelength of light used in a photolithography process to fabricate the conductive features. Conductive features within the gate electrode level region form respective PMOS transistor devices and respective NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the gate electrode level region.
摘要:
A restricted layout region includes a diffusion level layout that includes a number of diffusion region layout shapes to be formed within a portion of a substrate of a semiconductor device. The diffusion region layout shapes define at least one p-type diffusion region and at least one n-type diffusion region. The restricted layout region includes a gate electrode level layout defined to pattern conductive features within a gate electrode level above the portion of the substrate. The gate electrode level layout includes rectangular-shaped layout features placed to extend in only a first parallel direction. Some of the rectangular-shaped layout features form gate electrodes of respective PMOS transistor devices, and some of the rectangular-shaped layout features form gate electrodes of respective NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the restricted layout region of the semiconductor device.
摘要:
A restricted layout region in a layout of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes. The plurality of diffusion region layout shapes are defined in a non-symmetrical manner relative to a centerline defined to bisect the diffusion level layout. A gate electrode level layout is defined to include a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction. Each of a number of interconnect level layouts is defined to pattern conductive features within corresponding interconnect levels above the gate electrode level.
摘要:
A semiconductor device includes a substrate and a number of diffusion regions defined within the substrate. The diffusion regions are separated from each other by a non-active region of the substrate. The semiconductor device includes a number of linear gate electrode tracks defined to extend over the substrate in a single common direction. Each linear gate electrode track is defined by one or more linear gate electrode segments. Each linear gate electrode track that extends over both a diffusion region and a non-active region of the substrate is defined to minimize a separation distance between ends of adjacent linear gate electrode segments within the linear gate electrode track, while ensuring adequate electrical isolation between the adjacent linear gate electrode segments.
摘要:
A semiconductor device includes a first standard cell disposed on a substrate in a first row and having a first cell height; a second standard cell disposed on the substrate in a second row, adjacent to the first row, second standard cell having a second cell height, different from the first cell height; and a power line extending in a first direction along a boundary between the first standard cell and the second standard cell.
摘要:
A semiconductor device includes a substrate having cell areas and power areas that are alternately arranged in a second direction. Gate structures extend in the second direction. The gate structures are spaced apart from each other in a first direction perpendicular to the second direction. Junction layers are arranged at both sides of each gate structure. The junction layers are arranged in the second direction such that each of the junction layer has a flat portion that is proximate to the power area. Cutting patterns are arranged in the power areas. The cutting patterns extend in the first direction such that each of the gate structures and each of the junction layers in neighboring cell areas are separated from each other by the cutting pattern.