Abstract:
A secondary battery includes an electrode assembly having first and second electrodes and a separator, a pouch type case for receiving the electrode assembly, and a sheath for enclosing outer sides of the case. The sheath can prevent damage to the pouch in electronic devices to which the secondary battery is applicable as an inner pack type.
Abstract:
A battery including: a case having a case region extendable along a first direction; an electrode assembly housed within the case and including a first electrode, a second electrode, and a separator between the first electrode and the second electrode, the first electrode including a first uncoated region at a first end of the electrode assembly, and the second electrode including a second uncoated region at a second end of the electrode assembly, the second end facing oppositely away from the first end, and the first uncoated region being spatially separated from the second uncoated region along the first direction; and a terminal electrically coupled to at least one of the first uncoated region or the second uncoated region, the case region being between the first uncoated region and the second uncoated region along the first direction.
Abstract:
A layered structure includes a configuration in which non-aqueous secondary batteries are layered. Each non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator containing an electrolytic solution provided between the positive-electrode layer and the negative-electrode layer; a positive-electrode-side insulating layer formed on another surface of the positive-electrode collector layer; and a negative-electrode-side insulating layer formed on another surface of the negative-electrode collector layer. Two non-aqueous secondary batteries share one negative-electrode-side insulating layer.
Abstract:
A battery comprises at least one layer with anode material. For each layer with anode material, the battery comprises at least one layer with cathode material. Between each layer with anode material and each layer with cathode material there lies at least one separator as a separating layer. The battery also comprises a housing with an interior space. The housing is arranged such that it surrounds the layers, in each case such that each layer with anode material and each layer with cathode material is completely accommodated in it. The housing is substantially of a material that has no, or negligible, electrical conductivity. The housing is preferably of a nonconductor, with preference of plastic. The invention also relates to a method for producing the battery according to the invention, and to a use of the same.
Abstract:
The electrochemical cell of the present invention is provided with a hermetic container having a base member, a jointing material fixed to the base member, and a lid member welded on the base member via the jointing material, and in which a housing space sealed between the base member and the lid member is defined, and an electrochemical element which is housed inside the housing space and which is available to effect charging and discharging, wherein the lid member is made of stainless steel.
Abstract:
Disclosed herein is a battery module including two or more plate-shaped battery cells sequentially stacked, wherein each of the plate-shaped battery cells is constructed in a structure in which an electrode assembly of a cathode/separator/anode structure is mounted in a battery case formed of a laminate sheet including a resin layer and a metal layer, and a heat exchange member, including a plurality of heat exchange plates and a frame to which the heat exchange plates are connected, is mounted at one side of a stack of the battery cells for removing heat generated from the battery cells during the charge and discharge of the battery cells.
Abstract:
A secondary battery includes an electrode assembly having first and second electrodes and a separator, a pouch type case for receiving the electrode assembly, and a sheath for enclosing outer sides of the case. The sheath can prevent damage to the pouch in electronic devices to which the secondary battery is applicable as an inner pack type.
Abstract:
Disclosed is a voltage sensing assembly for sensing voltage of battery cells, each having electrode terminals formed at an upper or lower end thereof, in a state in which the voltage sensing assembly is mounted to a battery module, the voltage sensing assembly including (a) a block case formed of an electrically insulating material, the block case being mounted, horizontally within a space between electrode terminal connection parts of the battery cells, to the front or rear of the battery module, (b) wires connected respectively to voltage sensing terminals, each of the voltage sensing terminals being integrally formed at an upper or lower end of a corresponding one of bus bars electrically connected to the electrode terminal connection parts of the battery cells, and (c) a connector that transmits detected voltages of the wires to a controller.
Abstract:
A flexible battery and a flexible electronic device including the flexible battery as a power source. The flexible battery includes a cell stack comprising a plurality of unit cells, and an external casing sealing the cell stack, wherein each of the unit cells comprises a negative electrode, a positive electrode, an electrolyte layer disposed between the negative electrode and the positive electrode, and a first polymer film at least partially surrounding the negative electrode, the positive electrode, and the electrolyte layer.
Abstract:
A fire suppressant battery system has a battery pack, a non-conductive fire suppressant liquid in a fire suppressant bladder, and a fire suppressant protective layer. The bladder melts at a temperature above the battery pack's desired operating condition, has a cavity for receiving the liquid and contacts at least a section of the battery pack. The protective layer is positioned onto a portion of the fire suppression bladder's exterior surface that is on the opposite side to that which contacts the battery pack.