Abstract:
The present invention relates to a process for application of chemicals on textile materials for removing surface chemicals and finishes from textile materials which comprises the following steps: reducing the textile materials to an appropriate size; applying a first catalyzed vapor to the textile materials at a predetermined temperature; penetrating the textile materials at a predetermined temperature; applying a second catalyzed vapor to the textile materials; blending the textile materials; applying a third catalyzed vapor to the textile materials in the one or more blending boxes and dwelling the fabric at a predetermined temperature for a predetermined period of time; and applying a blast of cool air to the one or more blending boxes to stop chemical actions in the textile materials and then transporting the textile materials to next station for further deconstruction processing.
Abstract:
A laundry treating appliance may include a rotatable treating chamber for receiving a laundry load for treatment, and a motor for rotating the treating chamber, and may be operated such that during the acceleration of the laundry load toward a satellizing speed, the satellizing of the laundry load may be detected, whereby subsequent operation of the laundry treating appliance may be controlled based on the detection.
Abstract:
The present subject matter provides a vertical axis washing machine appliance with features for applying steam to articles disposed therein. The washing machine appliance can be configured for filling a sump of the appliance with fluid and activating a pump in order to drain the sump of fluid. After the pump is activated, the washing machine appliance can be configured for submerging a heater in the appliance's sump with fluid and also starting the heater in order to heat the fluid in the sump and generate steam. Related methods are also provided.
Abstract:
A laundry treating appliance has a rotatable drum at least partially defining a treating chamber for receiving a laundry load for treatment according to at least one cycle of operation and operated such that the extraction of liquid from the laundry load is controlled based on the inertia of the laundry load so that the total energy usage by the laundry treating appliance and a laundry drying appliance with which it is operably coupled may be minimized.
Abstract:
The present invention provides liquid cleaning compositions useful in cold water and hard water laundry applications, and methods for making and using such compositions. The compositions of the invention use surfactants or surfactant blends, such as α-sulfofatty acid esters or mixtures thereof (optionally along with one or more additional components), that have increased solubility/stability at cold temperatures, at higher-than-usual concentrations, and/or in hard water, with the composition remaining as a clear liquid. In certain embodiments, the compositions of the invention may be provided in the form of a unit dose, for example in a water-soluble pack or pouch. In use, the compositions of the invention result in an enhanced detergency along with a reduced amount of residue remaining in the machine, on laundered garments or cleaned dishware or hard surfaces, and on the body in personal care settings, and demonstrate a longer shelf-life, particularly when stored or used in colder temperatures.
Abstract:
The invention relates to a system and method for processing of fibres and particulates such as wool, wherein material is placed within a receptacle configured to allow the ingress and egress of treatment fluid, conveyed to a treatment fluid application area, treated with a treatment fluid, and conveyed from the treatment fluid application area.
Abstract:
The invention discloses synergistic combinations of surfactants blends and cleaning composition. In certain embodiments a surfactant system is disclosed which includes extended anionic surfactants, linker surfactants, and a multiply charged cation component. This system forms emulsions with, and can remove greasy and oily stains, even those comprised of non-trans fats. The compositions may be used alone, as a pre-spotter or other pre-treatment or as a part of a soft surface or hard surface cleaning composition.