Abstract:
The present invention provides a process for purifying a monoterpene or sesquiterpene having a purity greater than about 98.5% (w/w). The process comprises the steps of derivatizing the monoterpene (or sesquiterpene) to produce a monoterpene (or sesquiterpene) derivative, separating the monoterpene (or sesquiterpene) derivative, and releasing the monoterpene (or sesquiterpene) from the derivative. Also encompassed by the scope of the present invention is a pharmaceutical composition comprising a monoterpene (or sesquiterpene) having a purity greater than about 98.5% (w/w). The purified monoterpene can be used to treat a disease such as cancer. The present monoterpene (or sesquiterpene) may be administered alone, or may be co-administered with radiation or other therapeutic agents, such as chemotherapeutic agents.
Abstract:
The present invention relates to a method for removing impurities from nitrated crude products obtained during the nitration of nitratable aromatic compounds, after removal of the final nitrating acid, by treatment with a washing medium, and also to a plant or apparatus suitable for implementing this method. Further provided by the invention is a production plant for the nitration of nitratable aromatic compounds with subsequent purification of the nitrated products.
Abstract:
Process for scrubbing a crude mixture which is obtained in the nitration of toluene after separating off the nitrating acid and comprises dinitrotoluene, nitric acid, nitrogen oxides and sulfuric acid, which comprises two scrubbing steps (WS-I) and (WS-II), wherein i) in a first scrubbing step (WS-I), the crude mixture is extracted with a scrubbing acid I comprising nitric acid, nitrogen oxides and sulfuric acid in a scrub comprising at least one extraction stage, where the scrubbing acid discharged from the first extraction stage (WS-I-1) of the first scrubbing step (WS-I) has a total acid content of from 10 to 40% by weight and a content of from 80 to 350 ppm of hydrocyanic acid, giving a prescrubbed crude mixture, ii) in a second scrubbing step (WS-II), the prescrubbed crude mixture comprising dinitrotoluene is extracted with a scrubbing acid II in a scrub comprising at least one, preferably at least 2, extraction stage(s), where the scrubbing acid discharged from the first extraction stage (WS-II-1) of the second scrubbing step (WS-II) has a pH of less than or equal to 4, giving a dinitrotoluene-comprising mixture which is essentially free of nitric acid, sulfuric acid, nitrogen oxides and hydrocyanic acid and has a content of not more than 300 ppm of nitric acid and nitrogen oxides, not more than 3 ppm of sulfate and not more than 50 ppm of hydrocyanic acid.
Abstract:
The present invention relates to a continuously operated adiabatic process for the preparation of nitrobenzene by nitration of benzene with nitric acid and sulfuric acid, in which the dilute sulfuric acid obtained after the nitration has taken place and the crude nitrobenzene has been separated off from the aqueous phase is concentrated for the purpose of re-use in the nitration, and after its concentration, at least one minute before it comes into contact with fresh nitric acid again an oxidizing agent is added such that a concentration of the oxidizing agent of from 10 ppm to 5,000 ppm, based on the total weight of the concentrated sulfuric acid to be recycled into the nitration, is established.
Abstract:
The present invention provides a continuous process for the production of nitrobenzene by nitration of benzene with mixtures of sulfuric and nitric acid using a stoichiometric excess of benzene, in which the content of aliphatic organic compounds in the feed benzene during the start-up period of the production plant is always maintained at less than 1.5 wt. %, based on the total mass of the feed benzene. This is achieved either by mixing the feed benzene comprising recycled unreacted benzene (recycled benzene) and benzene newly supplied to the reaction (fresh benzene) in appropriate quantitative ratios during the start-up period, depending on the purity of the two streams, or by completely omitting the recycling of unreacted benzene during the start-up period, i.e. the feed benzene consists only of benzene newly supplied to the reaction.
Abstract:
The present invention provides a process for purifying a monoterpene or sesquiterpene having a purity greater than about 98.5% (w/w). The process comprises the steps of derivatizing the monoterpene (or sesquiterpene) to produce a monoterpene (or sesquiterpene) derivative, separating the monoterpene (or sesquiterpene) derivative, and releasing the monoterpene (or sesquiterpene) from the derivative. Also encompassed by the scope of the present invention is a pharmaceutical composition comprising a monoterpene (or sesquiterpene) having a purity greater than about 98.5% (w/w). The purified monoterpene can be used to treat a disease such as cancer. The present monoterpene (or sesquiterpene) may be administered alone, or may be co-administered with radiation or other therapeutic agents, such as chemotherapeutic agents.
Abstract:
Disclosed are a process and an apparatus for concentrating an organic acid by using a nitroalkane as an entrainer for the azeotropic removal of water from an aqueous organic acid solution. The nitroalkane may be the same as a nitroalkane that is the product of a high pressure nitration process that produces nitroalkanes and aqueous organic acid.
Abstract:
Disclosed are processes and apparatuses for concentrating at least one organic acid using an alkyl acetate as an entrainer. The processes and apparatuses may use the same alkyl acetate as an entrainer to concentrate a mixture of organic acids.
Abstract:
A method of removing alkalinity and salt from a nitroaromatic product downstream of water washing to remove mineral acids and alkaline washing to remove salts of organic acids, comprises washing the product stream with an acidic aqueous solution, prior to the step of removing excess organic reactant, by steam stripping or distillation. Acid removed from the stripper or column is recycled back for use in the acidic washing. The acidic washing is done instead of the neutral washing step of the prior art. It removes residual salt and decreases the level of entrained colloidal water in the nitroaromatic product.
Abstract:
A method of removing alkalinity and salt from a nitroaromatic product downstream of water washing to remove mineral acids and alkaline washing to remove salts of organic acids, comprises washing the product stream with an acidic aqueous solution, prior to the step of removing excess organic reactant, by steam stripping or distillation. Acid removed from the stripper or column is recycled back for use in the acidic washing. The acidic washing is done instead of the neutral washing step of the prior art. It removes residual salt and decreases the level of entrained colloidal water in the nitroaromatic product.