摘要:
A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 KJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.
摘要:
A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.
摘要:
A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.
摘要:
A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.
摘要:
The present invention provides a method of manufacturing magnets, including magnets comprising coil windings which may be multiple meters in length. In an embodiment, the support structure comprises a cylinder in which machined grooves are formed to define the magnet conductor path. The segments may consist of a composite material or a metal in the shape of a cylinder, but which need not be manufactured from a single piece of material. Rather, the support structure may be formed in multiple connectable segments which, when connected together, form a completed wiring support structure. Each segment may be of sufficient length to support multiple individual coil turns in a helical configuration. When the segments are connected the helical configuration continues without interruption from connectable segment to connectable segment. The segmented wiring support structure of the invention may be applied to linear or curved magnet geometries.
摘要:
An electrical system having a current path formed in a region between first and second electrodes. When a low pressure is sustained in the region, and a plasma is generated in a portion of a gap between the electrodes, current flows across the gap from the first electrode to the second electrode. In one embodiment the system is operable as a motor or a generator, having a first electrode and a member including a second electrode which is rotatable with respect to the first electrode. In another embodiment a first conductor is positioned to carry current toward or away from a first terminal at a high temperature, and a second conductor is spaced apart from the first terminal to carry current toward or away from a second terminal when the second conductor is at a low temperature relative to the temperature of the first region.
摘要:
A conductor assembly and method for making an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one series of embodiments the assembly comprises a spiral configuration, positioned along paths in a series of concentric cylindrical planes, with a continuous series of connected turns, each turn including a first arc, a second arc and first and second straight segments connected to one another by the first arc. Each of the first and second straight segments in a turn is spaced apart from an adjacent straight segment in an adjoining turn.
摘要:
An alternating current machine which generates a magnetic field or induces a voltage. In one embodiment the machine includes a stator and a rotor positioned about an axis. The stator includes three sets of coils, each set including at least a first pair of coil rows wired in series, with first and second members of the first pair configured to generate axial fields in opposite directions. Coil rows in the first pair of each set of coils are each arranged a different distance from the axis. A first member of the pair of the second set of coil rows is positioned between the first and second members of the pair of the first set of coil rows. The distance between the axis and the first member of the second pair of coil rows is intermediate the distances between the members of the first pair of coil rows and the axis.
摘要:
A method for manufacture of a conductor assembly along a curvilinear axis. The assembly may be of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In one example, the assembly includes a structure having a curved shape extending along the axis. A surface of the structure is positioned for formation of a channel along the curved shape. The structure is rotated about a second axis. While rotating the structure, a channel is formed in the surface that results in a helical shape in the structure. The channel extends both around and along the first axis.
摘要:
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.