Abstract:
A flow-through capacitor and a controlled charge chromatography column system using the capacitor for the purification of a fluid-containing material, which column comprises an inlet for a fluid to be purified and an outlet for the discharge of the purified fluid, and a flow-through capacitor disposed within the column. The flow-through capacitor comprises a plurality of spirally-wound, stacked washer or rods to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to one side of the backing layer, such as carbon fibers, and a second high surface area conductive layer secured to the opposite side of the backing layer, the high surface area material layers arranged to face each other and separated by a nonconductive, ion-permeable spacer layer to insulate electrically the backing and conductive layer. The system includes a DC power source to charge the respective conductive layers with different polarities whereby a fluid-containing material passing through the column is purified by the electrically conductive, high surface area stationary phase and the retention thereof onto the high surface area layer and permitting, for example, the purification of aqueous solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A controlled charge chromatography column for the purification of a fluid-containing material, which column comprises a chromatographic column having an inlet for the introduction of a fluid to be purified and an outlet for the discharge of the purified fluid, and one or more concentrated materials and a flow-through capacitor disposed within the column between the inlet and the outlet, the flow-through capacitor means comprising a plurality of spirally wound or stacked washer layers to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to the backing layer, such as composed of porous carbon fibers and a non-conductive, porous spacer layer to electrically insulate the backing and conductive layer and to permit the flow of material therethrough, the flow-through capacitor to be connected to a DC power source to charge the respective conductive layers with different polarities whereby a fluid containing material through the column is purified by the electrically conductive stationary phase and the retention thereof onto the high surface area layer and permitting for example the purification of solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A controlled charge chromatography column for the purification of a fluid containing materials, which column comprises a chromatographic column having an inlet for the introduction of a fluid to be purified and an outlet for the discharge of the purified fluid, and one or more concentrated materials and a flow-through capacitor disposed within the column between the inlet and the outlet, the flow-through capacitor means comprising a plurality of spirally wound, spaced apart layers to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to the backing layer, such as composed of porous carbon fibers and a non-conductive, porous spacer layer to electrically insulate the backing and conductive layer and to permit the flow of material therethrough, the flow-through capacitor to be connected to a DC power source to charge the respective conductive layers with different polarities whereby a fluid containing material through the column is purified by the electrically conductive stationary phase and the retention thereof onto the high surface area layer and permitting for example the purification of solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A controlled charge chromatography column for the purification of a fluid containing materials, which column comprises a chromatographic column having an inlet for the introduction of a fluid to be purified and an outlet for the discharge of the purified fluid, and one or more concentrated materials and a flow-through capacitor disposed within the column between the inlet and the outlet, the flow-through capacitor means comprising a plurality of spirally wound, spaced apart layers to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to the backing layer, such as composed of porous carbon fibers and a non-conductive, porous spacer layer to electrically insulate the backing and conductive layer and to permit the flow of material therethrough, the flow-through capacitor to be connected to a DC power source to charge the respective conductive layers with different polarities whereby a fluid containing material through the column is purified by the electrically conductive stationary phase and the retention thereof onto the high surface area layer and permitting for example the purification of solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A foul-resistant, flow-through capacitor, a system employing the capacitor and a method of separation is disclosed wherein the capacitor has at least one anode and cathode electrode pair. The electrodes are formed of high surface area, electrically conductive material and have an open, preferably straight, fluid flow-through path. Typically, the flow path is formed by a plurality of straight, parallel, spaced apart electrodes with the flow path not greater than one of the X-Y-Z distance components of the capacitor. The flow-through capacitor avoids fouling in use and may be employed with saturated waste or other streams.
Abstract:
A foul-resistant, flow-through capacitor, a system employing the capacitor and a method of separation is disclosed wherein the capacitor has at least one anode and cathode electrode pair. The electrodes are formed of high surface area, electrically conductive material and have an open, preferably straight, fluid flow-through path. Typically, the flow path is formed by a plurality of straight, parallel, spaced apart electrodes with the flow path not greater than one of the X-Y-Z distance components of the capacitor. The flow-through capacitor avoids fouling in use and may be employed with saturated waste or other streams.
Abstract:
A controlled charge chromatography column for the purification of a fluid-containing material, which column comprises a chromatographic column having an inlet for the introduction of a fluid to be purified and an outlet for the discharge of the purified fluid, and one or more concentrated materials and a flow-through capacitor disposed within the column between the inlet and outlet, the flow-through capacitor means comprising a plurality of spirally wound or stacked washer layers to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to the backing layer, such as composed of porous carbon fibers and a non-conductive, porous spacer layer to electrically insulate the backing and conductive layer and to permit the flow of material therethrough, the flow-through capacitor to be connected to a DC power source to charge the respective conductive layers with different polarities whereby a fluid containing material through the colum is purified by the electrically conductive stationary phase and the retention thereof onto the high surface area layer and permitting for example the purification of solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A high tensile strength, fluorocarbon-conductive, particle binder material useful as electrodes in a flow-through capacitor. The material comprises electrodes formed from fibrillated fine fibers, conductive carbon particles and a small amount of a polymeric binder. The method includes admixing the materials, fibrillating the polymers, and extruding the material to electrode forms.
Abstract:
A flow-through capacitor and a controlled charge chromatography column system using the capacitor for the purification of a fluid-containing material, which column comprises an inlet for a fluid to be purified and an outlet for the discharge of the purified fluid, and a flow-through capacitor disposed within the column. The flow-through capacitor comprises a plurality of spirally-wound, stacked washer or rods to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to one side of the backing layer, such as carbon fibers, and a second high surface area conductive layer secured to the opposite side of the backing layer, the high surface area material layers arranged to face each other and separated by a nonconductive, ion-permeable spacer layer to insulate electrically the backing and conductive layer. The system includes a DC power source to charge the respective conductive layers with different polarities whereby a fluid-containing material passing through the column is purified by the electrically conductive, high surface area stationary phase and the retention thereof onto the high surface area layer and permitting, for example, the purification of aqueous solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A flow-through capacitor and a controlled charge chromatography column system using the capacitor for the purification of a fluid-containing material, which column comprises an inlet for a fluid to be purified and an outlet for the discharge of the purified fluid, and a flow-through capacitor disposed within the column. The flow-through capacitor comprises a plurality of spirally-wound, stacked washer or rods to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to one side of the backing layer, such as carbon fibers, and a second high surface area conductive layer secured to the opposite side of the backing layer, the high surface area material layers arranged to face each other and separated by a nonconductive, ion-permeable spacer layer to insulate electrically the backing and conductive layer. The system includes a DC power source to charge the respective conductive layers with different polarities whereby a fluid-containing material passing through the column is purified by the electrically conductive, high surface area stationary phase and the retention thereof onto the high surface area layer and permitting, for example, the purification of aqueous solutions of liquids, such as salt, and providing for the recovery of a purified liquid.