Abstract:
Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract:
A flow-through capacitor and fluid for the purification system wherein the flow-through capacitor comprises a plurality of individuals, electrolyte-isolated cells (7), and the cells are electrically connected in series in a cartridge holder.
Abstract:
Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract:
A foul-resistant, flow-through capacitor, a system employing the capacitor and a method of separation is disclosed wherein the capacitor has at least one anode and cathode electrode pair. The electrodes are formed of high surface area, electrically conductive material and have an open, preferably straight, fluid flow-through path. Typically, the flow path is formed by a plurality of straight, parallel, spaced apart electrodes with the flow path not greater than one of the X-Y-Z distance components of the capacitor. The flow-through capacitor avoids fouling in use and may be employed with saturated waste or other streams.
Abstract:
A foul-resistant, flow-through capacitor, a system employing the capacitor and a method of separation is disclosed wherein the capacitor has at least one anode and cathode electrode pair. The electrodes are formed of high surface area, electrically conductive material and have an open, preferably straight, fluid flow-through path. Typically, the flow path is formed by a plurality of straight, parallel, spaced apart electrodes with the flow path not greater than one of the X-Y-Z distance components of the capacitor. The flow-through capacitor avoids fouling in use and may be employed with saturated waste or other streams.
Abstract:
A controlled charge chromatography column for the purification of a fluid-containing material, which column comprises a chromatographic column having an inlet for the introduction of a fluid to be purified and an outlet for the discharge of the purified fluid, and one or more concentrated materials and a flow-through capacitor disposed within the column between the inlet and outlet, the flow-through capacitor means comprising a plurality of spirally wound or stacked washer layers to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to the backing layer, such as composed of porous carbon fibers and a non-conductive, porous spacer layer to electrically insulate the backing and conductive layer and to permit the flow of material therethrough, the flow-through capacitor to be connected to a DC power source to charge the respective conductive layers with different polarities whereby a fluid containing material through the colum is purified by the electrically conductive stationary phase and the retention thereof onto the high surface area layer and permitting for example the purification of solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
The polarized electrode flow through capacitor comprises at least one each electrode material, with a pore volume that includes meso and micropores, with contained anionic or cationic groups. The polarized electrodes are in opposite polarity facing pairs, separated by a flow path or flow spacer. Both polarities of the particular attached ionic groups used are ionized at the working pH or composition of the particular feed solution supplied to inlet of the flow through capacitor. The contained groups cause the electrodes to be polarized so that they are selective to anions or cations. The polarized electrode flow through capacitor has better performance compared to identical flow through capacitors made from non-derivitized carbon. The capacitor electrode materials so derivitized provide this polarization function directly without need for a separate charge barrier material.
Abstract:
The polarized electrode flow through capacitor comprises at least one each electrode material, with a pore volume that includes meso and micropores, with contained anionic or cationic groups. The polarized electrodes are in opposite polarity facing pairs, separated by a flow path or flow spacer. Both polarities of the particular attached ionic groups used are ionized at the working pH or composition of the particular feed solution supplied to inlet of the flow through capacitor. The contained groups cause the electrodes to be polarized so that they are selective to anions or cations. The polarized electrode flow through capacitor has better performance compared to identical flow through capacitors made from non-derivitized carbon. The capacitor electrode materials so derivitized provide this polarization function directly without need for a separate charge barrier material.
Abstract:
Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract:
The invention features an electrochemical device which includes at least two capacitor electrodes 16, each of which includes a conductive material characterized in that at least ten percent (10%) of the overall surface area of the conductive material is an edge plane. In contrast to a basal plane, the electric field along an edge plane is distorted so as to exhibit an ‘edge effect or ‘fringe effect. Capacitor electrodes 16 with many edges, points, corners, or fractal surfaces exhibit greater capacitance per unit volume or mass amount of capacitor electrode material, than do materials in which the surface area of the material is predominately basal plane. An electrochemical device of the invention can be, for example, an electrochemical cell, e.g., a battery, a capacitor, or a flow-through capacitor.