摘要:
Optical waveguiding part (300), which waveguiding part is arranged to convey light through an output facet (30) of the waveguiding part, which waveguiding part comprises a ridge waveguide comprising a semiconductor substrate (320) and a semiconductor light-conveying ridge, wherein the output facet is set at an angle (α) in relation to a main direction (z) of light along the said waveguide, so that light travelling in the waveguide along said main direction has an angle of incidence towards the facet of between 2° and 14° and is reflected towards a first side (301) of the said ridge, wherein the waveguide comprises an MMI (Multi Mode Interferometer) (310), arranged to create an output image substantially at the output facet.
摘要:
Method for modifying the splitting or combining ratio of a first multimode interference (MMI) coupler (100), which first coupler is arranged to convey light from one or several input waveguides to one or several output waveguides, wherein a film (103a) of a material is arranged over the first coupler, wherein the film is strained so that a force is applied by the film to the surface of the first coupler, and so that the refractive index profile in the material of the first coupler changes as a consequence of the force, and wherein the splitting or combining ratio is modified as a consequence of the changed refractive index profile.
摘要:
One or more input access waveguides are connected to an optical splitter arranged to divide the light into two or more output waveguides, at least two of the splitter's output access waveguides are used to form a Mach-Zehnder interferometer modulator where at least one arm of the interferometer has a phase modulator electrode and a single electrical contact is arranged to apply a common voltage simultaneously to a selected portion in each arm, or selected portions in each arm of the waveguides that are disposed after the splitter but preceding the phase modulation electrodes, or alternatively the single electrical contact is arranged to apply the voltage to a selected portion of the input access waveguide connected to the splitter and in one or more selected portions of one or both of the arms after the splitter but preceding the phase modulation electrodes to provide gain or reduced optical loss.
摘要:
Method for modulating a carrier light wave with symbols, led through a modulating interferometer, the total path phase shift being the sum of a respective first, second, third or fourth static phase shift and a respective first, second, third or fourth variable modulating phase shift amount. For each of at least two symbols:the first variable modulating phase shift equals the sum of the first pair phase shift and the common phase shift;the second variable modulating phase shift equals the sum of the negative of the first pair phase shift and the common phase shift;the third variable modulating phase shift equals the sum of the second pair phase shift and the negative of the common phase shift;the fourth variable modulating phase shift equals the sum of the negative of the second pair phase shift and the negative of the common phase shift.
摘要:
Method for modulating a carrier light wave to achieve, a modulated light wave which carries information by symbols selected from a set of at least two different symbols. The light led through each path is phase-shifted by a respective total variable part phase shift, which for each path is the sum of at least three respective variable part phase shifts. Each variable part phase shift for each modulation state assumes one of two respective predetermined values, and each symbol is modulated using a respective combination of two such total variable part phase shifts. The modulation performed by the two paths is a PSK (Phase Shift Keying) modulation scheme, the group of symbols includes 2N unique symbols, the light led through each respective path is phase shifted using 2N−1 variable part phase shifts, and the respective difference between the respective predetermined values is the same for all variable part phase shifts.
摘要:
Method for modifying the splitting or combining ratio of a first multimode interference (MMI) coupler (100), which first coupler is arranged to convey light from one or several input waveguides to one or several output waveguides, wherein a film (103a) of a material is arranged over the first coupler, wherein the film is strained so that a force is applied by the film to the surface of the first coupler, and so that the refractive index profile in the material of the first coupler changes as a consequence of the force, and wherein the splitting or combining ratio is modified as a consequence of the changed refractive index profile.
摘要:
A semiconductor laser chip-on-carrier (CoC) device comprising: a semiconductor laser component comprising an electric laser terminal; a driver circuit for producing on an electric driver terminal an alternating current electric driving signal; and an electric signal conductor electrically connecting the driver terminal to the laser terminal, wherein the electric signal conductor comprises: a first printed trace which is not arranged on the semiconductor laser component and which comprises a first trace elongated section and a first trace downstream terminal section; and a first wire bond, connecting the first trace downstream terminal section to the laser terminal, and wherein the first trace elongated section is adapted to the semiconductor laser component such that the first trace elongated section and an internal capacitance of the semiconductor is laser component together correspond to an impedance which is at the most 20% from an output impedance of an output terminal of the driver circuit.
摘要:
An optical device comprises a light input, a light modulating means and a light output. The optical device further comprises an optical amplification device arranged to amplify light travelling between said light modulating means and said output. The optical amplification device comprises first and second serially connected post SOA (Semiconductor Optical Amplifier) units, each comprising at least one respective serially connected post SOA segment, which device is arranged to vary a light amplification by varying respective SOA bias voltages across said post SOA segments. A total SOA length of the first post SOA unit is relatively longer than a total SOA length of the second post SOA unit, which is relatively shorter. The optical device is arranged to, during operation using a particular operation program, always keep respective SOA bias voltages across each of the post SOA segments of the first post SOA unit at +0.5 V or more.
摘要:
Method for modulating a carrier light wave to achieve, a modulated light wave which carries information by symbols selected from a set of at least two different symbols. The light led through each path is phase-shifted by a respective total variable part phase shift, which for each path is the sum of at least three respective variable part phase shifts. Each variable part phase shift for each modulation state assumes one of two respective predetermined values, and each symbol is modulated using a respective combination of two such total variable part phase shifts. The modulation performed by the two paths is a PSK (Phase Shift Keying) modulation scheme, the group of symbols includes 2N unique symbols, the light led through each respective path is phase shifted using 2N−1 variable part phase shifts, and the respective difference between the respective predetermined values is the same for all variable part phase shifts.
摘要:
An optical waveguide splitter with a symmetric splitting power ratio having one input port and two output ports, includes a substrate and one or more vertical waveguide layers deposited thereon or diffused thereinto, and optionally one or more cladding layers deposited upon the waveguide layer(s). The waveguide layers and optionally one or more cladding layer together and optionally with the substrate form a profile of the refractive index that supports the propagation of light in a plane substantially parallel to the substrate. On both sides of the input port, the waveguide sidewalls terminate at a depth deeper than the location of the peak intensity of the beam transporting propagating light energy within the input port, and the sidewalls on both sides of each output port terminate at a depth shallower than the location of the peak intensity of the beam transporting the majority light energy within each output port.