摘要:
Provided are a silicon oxide-carbon composite, a method of preparing the same, and an energy storage device containing the same. In the method of preparing a silicon oxide-carbon composite, a reaction solution containing an organic solvent including an aromatic compound is provided. Crystalline carbon structures are formed by generating plasma in the reaction solution. A slurry is formed by adding silicon halide and a polyol in the reaction solution in which the crystalline carbon structures are dispersed. The slurry is separated from the organic solvent and subjected to thermal treatment.
摘要:
Disclosed herein is an alloy for a vehicle garnish, which is made by mixing Cu as a base with Mg and Si to have a composition of CuaMgbSic, wherein the alloy can have a color close to Au and the color of the alloy can be changed, and wherein the allow can also be made to have a low specific gravity and at a low cost.
摘要:
Provided are a silicon oxide-carbon composite, a method of preparing the same, and an energy storage device containing the same. In the method of preparing a silicon oxide-carbon composite, a reaction solution containing an organic solvent including an aromatic compound is provided. Crystalline carbon structures are formed by generating plasma in the reaction solution. A slurry is formed by adding silicon halide and a polyol in the reaction solution in which the crystalline carbon structures are dispersed. The slurry is separated from the organic solvent and subjected to thermal treatment.
摘要:
Provided are a carbon structure, a method of manufacturing the carbon structure, and an energy storage device having the carbon structure. According to the method of manufacturing the carbon structure, a reaction solution containing a catalyst and an organic solvent containing an aromatic compound is provided. Plasma is generated in the reaction solution, thereby forming a crystalline carbon structure.
摘要:
A method for purifying carbon nanotubes (CNTs) includes heating the CNTs including metallic impurities and metallic oxide impurities; reducing the metallic oxide impurities by passing a reducing gas through the CNTs; removing the metallic impurities and the reduced metallic oxide impurities by passing a liquid halide through the CNTs using a carrier gas; and cooling the CNTs. Therefore, by simply passing liquid chloroform through CNTs using a carrier gas, a method for purifying CNTs can be provided so as to simply, economically, and effectively remove metallic impurities from the CNTs in a short time through one step. In addition, the purification effect can be further improved by removing the metallic oxide impurities as well as the metallic impurities through the reducing step. In addition, it is possible to improve the purification effect by further performing a step of removing a halogen or an acid-treatment purification step.
摘要:
There are provided a microcapsular quantum dot-polymer composite, a method for producing the composite, optical elements, and a method for producing the optical elements. In order to produce the microcapsular quantum dot-polymer composite, a polymer having a functional group in the side chain is firstly heated in a first solvent to form a polymer solution. A quantum dot suspension consisting of quantum dots capped by a capping layer dispersed in a second solvent is added to the polymer solution to form a mixed solution. The mixed solution is cooled to form the quantum dot-polymer composite consisting of the quantum dots dispersed in the polymer matrix.
摘要:
Provided are a cathode material for a lithium secondary battery, and a lithium secondary battery containing the same. The cathode material for a lithium secondary battery comprises: a cathode active material, which is a lithium-transition metal oxide, and a lithium phosphate layer coated on a surface of the cathode active material.