Abstract:
A sensor package structure is provided. The sensor package structure includes a substrate, a sensor chip, a ring-shaped wall, and a light-permeable layer. The substrate has a first surface and a second surface that is opposite to the first surface. The first surface of the substrate has a chip-bonding region and a connection region that surrounds the chip-bonding region, and the substrate has a plurality of protrusions arranged in the connection region. The sensor chip is disposed on the chip-bonding region of the substrate and is electrically coupled to the substrate. The ring-shaped wall is formed on the connection region of the substrate, and the protrusions of the substrate are embedded in and gaplessly connected to the ring-shaped wall. The light-permeable layer is disposed on the ring-shaped wall, and the light-permeable layer, the ring-shaped wall, and the substrate jointly define an enclosed space therein.
Abstract:
A sensor package structure is provided. The sensor package structure includes a substrate, a sensor chip, a ring-shaped wall, and a light-permeable layer. The substrate has a first surface and a second surface that is opposite to the first surface. The first surface of the substrate has a chip-bonding region and a connection region that surrounds the chip-bonding region, and the substrate has a plurality of protrusions arranged in the connection region. The sensor chip is disposed on the chip-bonding region of the substrate and is electrically coupled to the substrate. The ring-shaped wall is formed on the connection region of the substrate, and the protrusions of the substrate are embedded in and gaplessly connected to the ring-shaped wall. The light-permeable layer is disposed on the ring-shaped wall, and the light-permeable layer, the ring-shaped wall, and the substrate jointly define an enclosed space therein.
Abstract:
A sensor package structure is provided and includes a substrate, a sensor chip disposed on and electrically coupled to the substrate, a ring-shaped support disposed on the sensor chip, and a light-permeable layer disposed on the ring-shaped support. A top portion of the sensor chip defines a sensing region and a carrying region that surrounds the sensing region and that carries the ring-shaped support. The top portion of the sensor chip includes a passivation layer arranged in the sensing region and the carrying region, a color filter arranged in the sensing region and the carrying region, a pixel layer arranged in the sensing region and formed on the central segment, and a micro-lens layer that is formed on the pixel layer. A part of the color filter layer in the carrying region has a roughened surface and at least partially embedded in the ring-shaped support.
Abstract:
A sensor lens assembly having a non-reflow configuration is provided. The sensor lens assembly includes a circuit board, an optical module fixed to a surface of the circuit board, a sensor chip assembled to the circuit board, a plurality of wires electrically coupling the sensor chip and the circuit board, a supporting adhesive layer, and a light-permeable sheet. The circuit board has a chip-receiving slot recessed in the surface thereof The sensor chip is arranged in the chip-receiving slot, and a top surface of the sensor chip and the surface of the circuit board have a step difference therebetween that is less than or equal to 10 μm. The supporting adhesive layer is in a ringed shape and is disposed on the top surface of the sensor chip. The light-permeable sheet is disposed on the supporting adhesive layer and faces the sensor chip.
Abstract:
A defect inspection method for a sensor package structure includes: using an image capture device to separately focus on and take pictures of at least three to-be-inspected regions of the sensor package structure along a height direction, so as to respectively obtain a defect image from one of the to-be-inspected regions, wherein the defect images are aligned with each other along the height direction and have different grayscale values; determining the defect image having a maximum grayscale value as a reference defect image, and defining any of the remaining defect images as a to-be-confirmed defect image; multiplying the maximum grayscale value by a predetermined grayscale ratio to obtain a predicted grayscale value, and confirming whether a difference between the to-be-confirmed and predicted grayscale values falls within an error range.
Abstract:
A method for reducing the tilt of an optical unit during manufacture of an image sensor includes the steps of: providing a semimanufacture of the image sensor, carrying out a preheating process, carrying out an adhesive application process, carrying out an optical unit mounting process, and carrying out a packaging process. Due to the preheating process, the semimanufacture will be subjected to a stabilized process environment during the adhesive application process and the optical unit mounting process, so as for the optical unit to remain highly flat once attached to the semimanufacture. The method reduces the chances of tilt and crack of the optical unit and thereby contributes to a high yield rate.
Abstract:
The present invention discloses an image sensor package structure. The image sensor package structure includes a substrate, a chip, a transparent lid, a first casing and a package material. The transparent lid covers a sensitization area of the chip and it also adheres to the chip which is deposed on the substrate. The first casing, which adheres to the transparent lid, forms an opening so that light can pass through the opening and the transparent lid to enter into the sensitization area. The package material covers around the chip and the transparent lid and fills between the substrate and the first casing. Because of the arrangement of adhesive layers placed between the first casing and the transparent lid and between the transparent lid and the chip, the blockage area from moisture is elongated. Therefore, the reliability of the image sensor package structure can be enhanced.
Abstract:
The present invention discloses a wafer level image sensor packaging structure and a manufacturing method of the same. The manufacturing method includes the following steps: providing a silicon wafer, dicing the silicon wafer, providing a plurality of transparent lids, fabricating a plurality of semi-finished products, performing a packaging process, mounting solder balls, and cutting an encapsulant between the semi-finished products. The manufacturing method of the invention has the advantage of being straightforward, uncomplicated, and cost-saving. Thus, the wafer level image sensor package structure is lightweight, thin, and compact. To prevent the image sensor chip from cracking on impact during handling, the encapsulant will be arranged on the lateral sides of the semi-finished products during the packaging process.
Abstract:
A substrate structure for an image sensor package includes a bottom base and a frame layer. The bottom base has an upper surface formed with a plurality of first electrodes, and a lower surface formed with a plurality of second electrodes. An insulation layer is coated between the first electrodes and in direct surface contact with the upper surface of the bottom base. A frame layer is arranged on and in direct surface contact with the first electrodes and the insulation layer to form a cavity together with the bottom base. The insulation layer is interposed between the bottom base and the frame layer.
Abstract:
The present invention discloses a wafer level image sensor packaging structure and a manufacturing method of the same. The manufacturing method includes the following steps: providing a silicon wafer, dicing the silicon wafer, providing a plurality of transparent lids, fabricating a plurality of semi-finished products, performing a packaging process, mounting solder balls, and cutting an encapsulant between the semi-finished products. The manufacturing method of the invention has the advantage of being straightforward, uncomplicated, and cost-saving. Thus, the wafer level image sensor package structure is lightweight, thin, and compact. To prevent the image sensor chip from cracking on impact during handling, the encapsulant will be arranged on the lateral sides of the semi-finished products during the packaging process.