摘要:
In high-current electrical devices protected by fuses, additional performance data besides whether or not a fuse is blown is useful for diagnostics, repair, and preventing emerging failures from reaching a level that damages the device. An intelligent fuse-holder includes a built-in current sensor. The current sensor signals are passed through an A/D converter and analyzed by a microcontroller. Through an interface, a user can program the fuse-holder to periodically degauss the current sensor coil to improve performance or turn the sensor power off to conserve power. The user may also control various I/O signals carrying information about the fuse, the intelligent electronics, or the host board on which the fuse-holder is mounted.
摘要:
Pre-aligned, kinematically mounted modules including processing lasers, beam trains, and individually calibrated control beams are quickly and easily replaced on subassembly bases with minimal in situ alignment, and can maintain working-spot position to micron tolerances over ambient temperature variations of ±10° C. Subassembly bases, with features for kinematically mating to a plurality of pre-aligned laser modules and to a platform base incorporated in the laser processing tool, enable multi-module subassemblies to be quickly replaced with spare subassemblies of the same type, or swapped for subassemblies of a different type. The mating features and reversible locks are designed to mitigate thermal effects that are often a dominant cause of alignment drift in processing lasers.
摘要:
A treatment pattern (such as a focused spot, an image, or an interferogram) projected on a treatment target may lose precision if the treatment beam must pass through a birefringent layer before reaching the target. In the general case, the birefringent layer splits the treatment beam into ordinary and extraordinary components, which propagate in different directions and form two patterns, displaced from each other, at the target layer. The degree of birefringence and the orientation of the optic axis, which influence the amount of displacement, often vary between workpieces or between loci on the same workpiece. This invention measures the orientation of the optic axis and uses the data to adjust the treatment beam incidence direction, the treatment beam polarization, or both to superpose the ordinary and extraordinary components into a single treatment pattern at the target, preventing the birefringent layer from causing the pattern to be blurred or doubled.
摘要:
A horn for vibratory solid-state ultrasonic welding of metals and similarly-behaved materials “self-levels” to produce wide continuous seams or large-area spot-welds between delicate workpieces without damage, even if the workpieces are not perfectly flat and parallel to the nominal toolface angle. The horn toolface flexes under pressure to conform to skew-angled workpieces because it is disposed on a tool head supported by a tool neck cut from the tool body. The tool head, the tool neck, or both are anisotropically compliant. When resonances are properly optimized for typical VSS modes of vibration, atypical but useful localized modes are excited at the compliant toolface edges, actually intensifying the bond energy where one might normally expect unwanted damping. Various design approaches optimize the characteristics of the tool head and tool neck to various materials and bonding configurations. The horns can be configured for use with existing ultrasonic welders.
摘要:
A laser ablation system is controlled by an autofocus subsystem particularly optimized for precision ablation of large workpieces, in an open factory environment where temperatures are not tightly controlled, where the workpieces may have high-spatial-frequency features that affect the focus condition of the working beam. The autofocus operates at a high bandwidth to support high process speed. The autofocus beam shares most of its optical path with the working beam, so its measurements account for thermal effects in the beam train as well as the workpiece. The autofocus beam measures target or adjacent areas just before, or during, ablation, so that temperature drifts do not have time to change the effective focus error. The autofocus spot is substantially the same size as the working spot, so its measurements account for workpiece features of the same spatial frequencies that affect the working beam.