摘要:
The invention relates to a method for performing an oil change on a wind power plant, comprising the steps of rotating the rotor (3) to a maintenance position, subsequently draining the oil out of a first variable-speed gearbox (6), filling the first variable-speed gearbox (6) with fresh oil, draining the oil out of a second variable-speed gearbox (6′) that is oriented differently than the first gearbox, and filling the second drive device (6′) with fresh oil. The variable-speed gearboxes each comprise a sump (63) having a first outlet opening (65) and a mirrored sump (64) on the opposite end of the housing thereof having a second outlet opening (66). Thus, the rotor (3) does not need to be rotated further during the oil change. The oil change can be performed simultaneously on several or all variable-speed gearboxes, reducing time and personnel expenses. The invention further relates to a correspondingly designed drive device and to an oil changing device.
摘要:
A harmonic predictor for a wind farm comprising at least two wind turbines, each having a generator with a converter for generating electrical energy. The harmonic predictor determines the harmonic component expected from the wind farm in order to limit the harmonic component to a harmonic limit. The harmonic predictor comprises a calculation module, an iteration module and a summing module. The calculation module calculates a complex mean value over at least one period of the harmonic component of one of the wind turbines and determines a first equivalent vector therefrom. The iteration module successively connects the calculation module to at least one other of the wind turbines to form at least one second equivalent vector. The summing module sums the equivalent vectors to form a total vector and compares the total vector with the harmonic limit.
摘要:
An arrangement of components (12, 13, 30) for a wind power plant. A first component (12, 13) has a flange (15, 130) having a flange contact surface (121, 122, 133). A second component (30) has a flange-mounting surface (131, 132) for a flange (15, 130) of the first component (12, 13). Alternatively, the second component (12, 13) has a flange (15, 130) having a flange contact surface (122, 133) and the flange contact surface (122, 133) of the first component (12, 13) and the flange-mounting surface (131, 132) of the second component (30) are arranged opposite each other, or the flange contact surfaces (122, 121) of the components are arranged opposite each other. At least one flange contact surface (121, 122, 133) of a flange (15, 130) and/or the flange-mounting surface (131, 132) of the second component (30) has an outer coating made of a chrome-steel alloy.
摘要:
Provided herein is a wind energy installation including a generator for production of electrical energy, a rotor which drives the generator and has variable pitch rotor blades and a central control device, and individual pitch devices provided individually for the rotor blades. The individual pitch devices may include an adjustment drive, a communication link to the central control device and a regulator, the rotor blades being adjustable in order to slow down the wind energy installation to a shut-down position. The individual pitch devices may also include a disturbance situation detector which is designed to identify abnormal operating states and to move the rotor blades to a shut-down position. Also provided herein is the method of operating such a wind energy installation.
摘要:
A gear mechanism (22) of a wind power plant (10) that includes at least one planetary stage (24.1, 24.2) that has at least one planet gear carrier (41, 61) and a method for dismantling a multi-stage gear mechanism (22) of a wind power plant (10). The gear mechanism (22) is arranged in a nacelle (15) arranged on a tower (11) of a wind power plant (10). The gear mechanism (22) has at least one planetary stage (24.1, 24.2), and the at least one planetary stage (24.1, 24.2) has a planet gear carrier (41, 61) and several planet gears (45, 65) held in the planet gear carrier (41, 61) using planetary bolts (47, 67). The planet gears (45, 65) are in operative connection with a ring gear (49, 69) of the planetary stage (24.1, 24.2) surrounding the planet gears (45, 65).
摘要:
The disclosure relates to checking a rotational speed relay of a wind turbine. The wind turbine comprises a rotational speed sensor for the rotational speed of a shaft. The rotational speed sensor outputs a rotational speed signal, which is fed to a signal input of the rotational speed relay. According to disclosure, the rotational speed signal fed to the rotational speed relay is first inactivated. Then a signal generator is activated, which produces a check signal equivalent to the rotational speed signal. The check signal is fed to the signal input of the rotational speed relay. The signal generator is operated with a check signal that is beyond a rotational speed limit, and a check is performed to determine if the rotational speed relay generates a switch-off command. This allows the functional capability of the rotational speed relay to be checked reliably and at low cost.
摘要:
A wind energy plant comprising a rotor having blades and a generator driven by said rotor for generating electric energy. The pitch of the blades can be adjusted and a pitch system for adjusting the pitch angle of the blades is provided, which is supplied by a hub power source. An additional electric load is provided on the hub. A pitch power control device is provided which dynamically distributes the power of the hub power source between the pitch system and the additional electric load and further acts on the pitch system such that the power consumption thereof during high-load operation is reduced. Thus, the power consumption of the pitch system during high-load operation can be reduced and additional power provided for operating the additional load. Even high-performance additional loads, such as a blade heater, can be operated in this way, without having to boost the hub power source.
摘要:
A method for determining an energy yield loss of a first wind turbine (1-49) of a wind farm (51) that includes a plurality of wind turbines (1-49). The first wind turbine (1-49) is operated in a reduced energy yield mode that is outside an energy-optimized normal operating mode and a reduced energy yield of the first wind turbine (1-49) is determined. At least one second wind turbine (1-49) is selected according to a pre-determinable criterion. The energy yield of the at least one second wind turbine (1-49) is determined and depending upon the energy yield of the at least one second wind turbine (1-49), an energy yield potential of the first wind turbine (1-49) is determined. The difference between the energy yield potential of the first wind turbine (1-49) and the determined reduced energy yield is formed.
摘要:
A method is provided for operating a wind power plant (15-19) with a rotor-driven (25-29) electric generator (30) for delivering electric power to an electric grid (31) which provides a grid voltage in which, when excess voltage prevails in the grid (31), idle power from the wind power plant (15-19) is fed to the grid (31) in order to lower the voltage. A wind power plant is provided (15-19) with a rotor-driven electric generator (30) for delivering electric power to an electric grid (31) in which when excess voltage prevails in the grid idle power from the wind power plant (15-19) is fed to the grid (31) in order to lower the voltage. Monitoring occurs to determine whether within a predeterminable time a voltage was lowered to a predeterminable reference value and/or an idle current is delivered which is greater than or equal to a predeterminable idle current reference value.
摘要:
A wind farm includes a plurality of wind energy installations, a transfer point at which electrical energy produced by the wind energy installations is transferred to a public electricity grid system and for which nominal values are preset, and a measurement sensor configured to measure electrical actual values at the transfer point. The wind farm also includes a master regulator associated with an upper control level and configured to use upper nominal values and upper actual values at the upper control level to determine a preset for a lower control level, and a plurality of submaster regulators associated with the lower control level and configured to use the preset as a lower nominal value and, on the basis of the lower nominal value and a lower actual value, determine presets for the wind energy installations. A high level of control accuracy can thus be achieved even in large wind farms.