Abstract:
A motor controller architecture and method of operating the same. The motor controller asynchronously generates multiphase control signals for a multi-phase electric motor, relative to the estimation of various state parameters used in generating those control signals. Latency between the state estimation task and the control signal generation task is addressed by storing a timestamp with each input data sample from the sensors, and maintaining that timestamp with the output data from state estimation. Knowledge of the timestamp value allows the control task to update the state estimates to compensate for the time difference between the input data sample and the current sampling period.
Abstract:
A process and apparatus provide a JTAG TAP controller (302) to access a JTAG TAP domain (106) of a device using a reduced pin count, high speed DDR interface (202). The access is accomplished by combining the separate TDI and TMS signals from the TAP controller into a single signal and communicating the TDI and TMS signals of the single signal on the rising and falling edges of the TCK driving the DDR interface. The TAP domain may be coupled to the TAP controller in a point to point fashion or in an addressable bus fashion. The access to the TAP domain may be used for JTAG based device testing, debugging, programming, or other type of JTAG based operation.
Abstract:
An electronic circuit includes a more-secure processor having hardware based security for storing data. A less-secure processor eventually utilizes the data. By a data transfer request-response arrangement between the more-secure processor and the less-secure processor, the more-secure processor confers greater security of the data on the less-secure processor. A manufacturing process makes a handheld device having a storage space, a less-secure processor for executing modem software and a more-secure processor having a protected application and a secure storage. A manufacturing process involves generating a per-device private key and public key pair, storing the private key in a secure storage where it can be accessed by the protected application, combining the public key with the modem software to produce a combined software, signing the combined software; and storing the signed combined software into the storage space. Other processes of manufacture, processes of operation, circuits, devices, wireless and wireline communications products, wireless handsets and systems are disclosed and claimed.
Abstract:
A closed loop amplifier adapted to be directly connected to a battery having a battery voltage for powering the amplifier. The amplifier includes an amplifier stage having a node for receiving a control voltage for controlling a common mode voltage of the stage, a digital voltage indicator for generating a digital value corresponding to the battery voltage, and a common mode voltage supply providing the control voltage corresponding to the digital value.In a preferred embodiment, a Class-D amplifier is powered by a power supply providing power by way of a power supply voltage node and a ground node, the amplifier having improved common-mode voltage control. A first integrator stage receives an input signal and provides an output signal, the integrator stage having a first common-mode reference voltage applied thereto for control of the common-mode voltage of the integrator stage. A second integrator stage receives an input signal and provides an output signal, the integrator stage having a second common-mode reference voltage applied thereto for control of the common-mode voltage of the integrator stage. A comparator stage receives the output of the first integrator stage and the output of the second integrator stage and provides an output signal corresponding to the difference between them. An output stage provides an output of the amplifier. A digital voltage indicator generates a digital value corresponding to the voltage at the power supply voltage node, while a common-mode voltage supply provides the first common-mode reference voltage corresponding to the digital value.
Abstract:
A method of variable length coding classifies each received symbol into one of a plurality of classifications having a corresponding variable length code table selected based upon a probability distribution of received symbols within the classification. The variable length codeword output corresponds to the received symbol according to the variable length code table corresponding to the classification of that received symbol. The plurality of classifications and the corresponding variable length code tables may be predetermined and fixed. Alternatively, the variable length code table may be dynamically determined with data transmitted from encoder to decoder specifying the variable length code tables and their configurations. Universal variable length code (UVLC) is used to code the symbols. Universal variable length code can instantiate to different variable length code tables with different parameters.
Abstract:
The tristateless bus interface communication scheme according to the present invention addresses many of the shortcomings of the prior art. In accordance with various aspects of the present invention, a low power embedded system bus architecture is provided with a bus interface connected to one or more peripheral interface using logic processes to enable microcontroller-based products and other components and devices to achieve a low power data transmission between central processors and peripheral devices. In accordance with an exemplary embodiment, a low power embedded system bus architecture comprises logic devices, for example, an OR gate for passing through only data from a selected peripheral device. To facilitate the throughput of data, the non-selected peripheral devices may only provide logic zero to the OR gate. The logic device arrangement may comprise any combination of logic devices which performs the function of eliminating the need for tristate buffers. Through the elimination of tristate buffers, the present invention can lower the power consumed by the microcontroller, and improves the ability to test a large portion of the devices. In accordance with an exemplary embodiment, an AND gate is provided in each peripheral device for providing a logic zero when the peripheral device is not selected, and for providing data when the peripheral device is selected. In addition the AND gate eliminates the occurrence of high impedance Z states.
Abstract:
Described herein is a technology or a method for fabricating a flip-chip on lead (FOL) semiconductor package. A lead frame includes an edge on surface that has a geometric shape that provides a radial and uniform distribution of electric fields. By placing the formed geometric shape along an active die of a semiconductor chip, the electric fields that are present in between the lead frame and the semiconductor chip are uniformly concentrated.
Abstract:
An electronic circuit includes a more-secure processor having hardware based security for storing data. A less-secure processor eventually utilizes the data. By a data transfer request-response arrangement between the more-secure processor and the less-secure processor, the more-secure processor confers greater security of the data on the less-secure processor. A manufacturing process makes a handheld device having a storage space, a less-secure processor for executing modem software and a more-secure processor having a protected application and a secure storage. A manufacturing process involves generating a per-device private key and public key pair, storing the private key in a secure storage where it can be accessed by the protected application, combining the public key with the modem software to produce a combined software, signing the combined software; and storing the signed combined software into the storage space. Other processes of manufacture, processes of operation, circuits, devices, wireless and wireline communications products, wireless handsets and systems are disclosed and claimed.
Abstract:
An electronic circuit includes a more-secure processor having hardware based security for storing data. A less-secure processor eventually utilizes the data. By a data transfer request-response arrangement between the more-secure processor and the less-secure processor, the more-secure processor confers greater security of the data on the less-secure processor. A manufacturing process makes a handheld device having a storage space, a less-secure processor for executing modem software and a more-secure processor having a protected application and a secure storage. A manufacturing process involves generating a per-device private key and public key pair, storing the private key in a secure storage where it can be accessed by the protected application, combining the public key with the modem software to produce a combined software, signing the combined software; and storing the signed combined software into the storage space. Other processes of manufacture, processes of operation, circuits, devices, wireless and wireline communications products, wireless handsets and systems are disclosed and claimed.
Abstract:
This invention is a method of operating a system having multiple finite state machines and a controller controlling an operational state of each finite state machine. Upon selection by the controller of a changed operational state, each finite state machine determines if it supports the changed operational state. If the finite state machine supports the changed operational state, it enters the changed operational state. If the finite state machine does not support the changed operational state, it enters an offline state. The controller may also determine whether a changed operational state is supported by each finite state machine.