Abstract:
A process for effecting mass transfer between a liquid phase and a gaseous phase in a filled-type column comprising an external shell which accommodates at least one filler-containing basket wherethrough the phases are caused to flow in countercurrent relationship, advantageously comprises the step of feeding the gaseous phase to the at least one basket through a gas-permeable surface thereof which is larger than the basket cross-section, preferably in a prevailing radial flow direction.
Abstract:
A system (8; 9; 50) is described of walls for catalytic beds of synthesis reactors (1), in which there is a wall (14) in direct contact with a catalytic bed (7) for containing it, said wall (14) having a plurality of portions (17) permeable to the gases and a plurality of portions (19; 54; 55) impermeable to the gases, said portions (17) permeable to the gases being equipped with slits (18; 52, 53; 60; 70) of a size such as to allow the free passage of the synthesis gases through them but not the passage of the catalyst, in which the slits are obtained with milling, water cutting or electro-erosion processing.
Abstract:
A system (8; 9; 50) is described of walls for catalytic beds of synthesis reactors (1), in which there is a wall (14) in direct contact with a catalytic bed (7) for containing it, said wall (14) having a plurality of portions (17) permeable to the gases and a plurality of portions (19; 54; 55) impermeable to the gases, said portions (17) permeable to the gases being equipped with slits (18; 52, 53; 60; 70) of a size such as to allow the free passage of the synthesis gases through them but not the passage of the catalyst, in which the slits are obtained with milling, water cutting or electro-erosion processing.
Abstract:
A reforming apparatus of the type comprising an indirect heat exchange zone (5) for the reforming reaction of a gaseous flow comprising methane and steam into CO, CO2, and H2, is distinguished by the fact that it comprises advantageously a plurality of floating-head tubes (6) containing a reforming catalyst, a chamber (9) for collection of the reaction products positioned downstream of the tubes (6), and a duct (15) open in said chamber (9) for extraction of the reaction products from the apparatus.