Abstract:
A cold rolled steel wire having the following chemical composition expressed in percent by weight, 0.2≤C %≤0.6, 0.5≤Mn %≤1.0, 0.1≤Si≤0.5%, 0.2≤Cr≤1.0%, P≤0.020%, S≤0.015%, N≤0.010%, and optionally not more than 0.07% Al, not more than 0.2% Ni, not more than 0.1% Mo and not more than 0.1% Cu, the balance being iron and the unavoidable impurities due to processing. This wire has a microstructure including bainite and, optionally, up to 35% acicular ferrite and up to 15% pearlite. A fabrication method and flexible conduits for hydrocarbon extraction are also provided.
Abstract:
A cold rolled steel wire having the following chemical composition expressed in percent by weight, 0.2≤C %≤0.6, 0.5≤Mn %≤1.0, 0.1≤Si≤0.5%, 0.2≤Cr≤1.0%, P≤0.020%, S≤0.015%, N≤0.010%, and optionally not more than 0.07% Al, not more than 0.2% Ni, not more than 0.1% Mo and not more than 0.1% Cu, the balance being iron and the unavoidable impurities due to processing. This wire has a microstructure including bainite and, optionally, up to 35% acicular ferrite and up to 15% pearlite. A fabrication method and flexible conduits for hydrocarbon extraction are also provided.
Abstract:
The present invention provides a production method for a closed-loop cable. The method includes the steps of providing a cable including a core and metal strands helically wound around the core, connecting two ends of the cable in splice areas via splice knots formed by ends of each metal strand, inserting the metal strand ends inside the cable after locally removing the core and subsequently overmolding each splice area using a polymer.
Abstract:
A cold rolled steel wire having the following chemical composition expressed in percent by weight, 0.2≦C %≦0.6, 0.5≦Mn %≦1.0, 0.1≦Si≦0.5%, 0.2≦Cr≦1.0%, P≦0.020%, S≦0.015%, N≦0.010%, and optionally not more than 0.07% Al, not more than 0.2% Ni, not more than 0.1% Mo and not more than 0.1% Cu, the balance being iron and the unavoidable impurities due to processing. This wire has a microstructure including bainite and, optionally, up to 35% acicular ferrite and up to 15% pearlite. A fabrication method and flexible conduits for hydrocarbon extraction are also provided.
Abstract:
A cold rolled steel wire having the following chemical composition expressed in percent by weight, 0.2≤C %≤0.6, 0.5≤Mn %≤1.0, 0.1≤Si≤0.5%, 0.2≤Cr≤1.0%, P≤0.020%, S≤0.015%, N≤0.010%, and optionally not more than 0.07% Al, not more than 0.2% Ni, not more than 0.1% Mo and not more than 0.1% Cu, the balance being iron and the unavoidable impurities due to processing. This wire has a microstructure including bainite and, optionally, up to 35% acicular ferrite and up to 15% pearlite. A fabrication method and flexible conduits for hydrocarbon extraction are also provided.
Abstract:
A process for the manufacture of a profiled wire of hydrogen-embrittlement-resistant, low-alloy carbon steel for flexible pipelines for the offshore oil and gas operations sector is provided. The process includes providing a low-alloy carbon steel wire rod having a composition including, expressed in percentages by weight of the total mass 0.75
Abstract:
A process for the manufacture of a profiled wire of hydrogen-embrittlement-resistant, low-alloy carbon steel for flexible pipelines for the offshore oil and gas operations sector is provided. The process includes providing a low-alloy carbon steel wire rod having a composition including, expressed in percentages by weight of the total mass 0.75
Abstract:
The present invention provides a production method for a closed-loop cable. The method includes the steps of providing a cable including a core and metal strands helically wound around the core, connecting two ends of the cable in splice areas via splice knots formed by ends of each metal strand, inserting the metal strand ends inside the cable after locally removing the core and subsequently overmolding each splice area using a polymer.