Method for detecting a malfunction during drilling operations

    公开(公告)号:US10324006B2

    公开(公告)日:2019-06-18

    申请号:US15103681

    申请日:2014-12-11

    Abstract: A method for detecting a malfunction during a drilling operation is carried out by making use of a drill bit, the method including the following: a) the comparison of a first magnitude (E) representative of the mechanical specific energy (MSE), with a first threshold value (Emax); b) when the first magnitude is greater than the first threshold value, the comparison of the ratio (E/S) between the first magnitude and a second magnitude (S) representative of the drilling force with a second threshold value ((E/S)max); c) the detection of a malfunction in the drilling operation when the ratio (E/S) between the first magnitude (E) and the second magnitude (S) is greater than the second threshold value ((E/S)max). The method provides the ability to ensure more precise detection of a malfunction during drilling operations.

    METHOD FOR LOCALIZING A ROBOT IN A LOCALIZATION PLANE

    公开(公告)号:US20170131102A1

    公开(公告)日:2017-05-11

    申请号:US15128901

    申请日:2015-04-14

    CPC classification number: G01C21/165 G05D1/0272 G05D2201/0217

    Abstract: A method for localizing a robot in a localization plane with a bi-dimentional reference with axis x and y comprises: determining by odometry an estimation of coordinates x1 and y1 and orientation θ1 of the robot; determining an estimation θ2 of the orientation of the robot using a virtual compass; determining an estimation θ3 of the orientation of the robot by correlating parts of a reference and a query panorama; determining an estimation x4, y4 of the robot position using Iterative Closest Points; determining standard deviations σ_x1, σ_x2, σ_θ1 σ_θ2, σ_θ3, σ_x4, σ_y4 of the estimations; determining probability distributions G(x1), G(y1), G(θ1), G(θ2), G(θ3), G(x4), G(y4) of each estimation using standard deviations; determining three global distributions GLOB(x), GLOB(y), GLOB(θ) and a global estimation xg, yg of the coordinates of the robot in the localization plane and a global estimation θg of its orientation by applying maximum likelihood to global distributions.

Patent Agency Ranking