Abstract:
A content distribution network includes a first server in communication with an anycast server that provides content via a unicast signal, and with a multicast server that provides the content via a multicast signal. The first server is configured to receive a list of source addresses associated with the content, and to provide a metadata file including an anycast Internet protocol address of the anycast server from the list of source addresses as an Internet protocol address of the content in response to a first request for the content. When the number of client devices requesting the content exceeds a first threshold, the first server receives an updated list of sources including a multicast Internet protocol address of a multicast server, and provides the multicast Internet protocol address of the multicast server as the Internet protocol address of the content in the metadata file.
Abstract:
Systems and methods provide automated virtual network function modification using replicated environments and functions to measure and test modified functions against one another before implementation.
Abstract:
Concepts and technologies are disclosed herein for pressure sensing via bone conduction. According to one aspect, a device can receive a modified signal after a signal has propagated through a body of a user and a surface with which the user is in contact. The modified signal can include the signal as modified by the body of the user and the surface. The device can compare the modified signal to a baseline signal. The device can determine, based upon the comparison of the modified signal to the baseline signal, a change between the modified signal and the baseline signal. The device can determine, based upon the change between the modified signal and the baseline signal, a pressure applied by the user to the surface. The pressure can be used for various applications.
Abstract:
A distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas. The cellular band outputs of these microcell base station devices are used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.
Abstract:
Aspects of the subject disclosure may include, for example, identifying a first user associated with a first mobile device, and determining a first user type associated with the first user. Further embodiments can include identifying a first identity associated with the first user based on the first user type and identifying a second identity associated with the first user based on the first user type. Additional embodiments can include providing first alternate content to the first mobile device to mask the first identity and providing second alternate content to the first mobile device associated with the second identity. Other embodiments are disclosed.
Abstract:
Methods and apparatus to reduce device power consumption through usage context operation. An operational mode of a mobile device is detected. A usage context corresponding to the operational is determined. A device configuration supportive of the usage context is generated. The device configuration is implemented on the mobile device.
Abstract:
A method for transferring content includes requesting the content from a serving peer and sending the content to a requesting peer. Requesting the content includes sending a request to a tracker, receiving a request token, a path identifier, and a first peer identifier from the tracker, and sending a request message to a second peer. The first peer identifier includes an identity of a first peer, and the request message includes the request token, the path identifier, and the first peer identifier. Sending the content includes receiving the request token and the path identifier from a third peer, sending a return message to a fourth peer, and transferring the content from the serving peer to the requesting peer through a transfer path. The return message includes the path identifier and a second peer identifier. The second peer identifier includes an identity of a fifth peer. The transfer path includes at least the second, fourth, and fifth peers.