摘要:
A Schottky diode of SiC has a substrate layer, a drift layer and emitter layer regions formed in the drift layer. A metal layer makes an ohmic contact to the emitter layer regions and Schottky contact to the drift layer. A depletion of the drift layer region between two adjacent emitter layer regions is allowed in the blocking state of the diode making the two adjacent p-type emitter layer regions form a continuous depleted region therebetween in this state.
摘要:
A pn-diode of SiC has a first emitter layer part doped with first dopants having a low ionization energy and a second part designed as a grid and having portions extending vertically from above and past the junction between the drift layer and the first part and being laterally separated from each other by drift layer regions for forming a pn-junction by the first part and the drift layer adjacent such portions at a vertical distance from a lower end of the grid portions. The different parameters of the device are selected to allow a depletion of the drift layer in the blocking state form a continuous depleted region between the grid portions, to thereby screen off the high electric field at the pn-junction so that it will not be exposed to high electrical fields.
摘要:
A device for epitaxially growing objects by Chemical Vapour Deposition on a substrate (1) comprises a susceptor (4) having a room (6) for receiving the substrate and means (9) for heating the susceptor and thereby the substrate and a gas mixture to be fed to the substrate for said growth. The substrate is arranged close to a first susceptor wall part (7) at least partially delimiting said room. Said heating means is arranged to heat the susceptor to a higher temperature of at least a second wall part (5) delimiting said room thereof and located substantially opposite to said first wall part than the temperature of the first wall part for obtaining a temperature gradient from said second wall part to the substrate and radiative heating thereof by said second wall part. (FIG. 1).
摘要:
A method for producing a semiconductor device having semiconductor layers of SiC with at least three doped layers on top of each other, comprises the steps of growing a first semiconductor layer of SiC; implanting an impurity dopant into the first layer to form a second doped surface layer as a sub-layer therein, the second doped surface layer being surrounded, except for the top surface thereof, by the first semiconductor layer; and epitaxially growing a third semiconductor layer of SiC on top of the second layer of SiC and regions of the first layer adjacent thereto to totally bury the second semiconductor layer. The impurity dopant implanted into the first semiconductor layer is of a first conductivity n or p type, and the first semiconductor layer being doped with a second, opposite conductivity type, so as to form a pn-junction at the interface between the first and second layers.
摘要:
A method for producing a semiconductor device comprising a step a) of implanting an impurity dopant of a first conductivity type into said semiconductor layer (1) being doped according to a second opposite conductivity type for forming a first type doped surface layer (2) surrounded, except for the top surface thereof, by second conductivity type doped regions (3) of said semiconductor layer for forming a pn-junction (4) at the interface thereto. A highly doped additional semiconductor layer (5) is grown on top of said surface layer (2) for forming a contact layer allowing a low resistance ohmic contact to be established to the device so created.