摘要:
The storage apparatus includes a plurality of microprocessors; a plurality of storage areas formed in a drive group configured from a plurality of physical drives; and a management unit which manages microprocessors which handle data I/Os to/from one or more storage areas among the plurality of storage areas. The management unit detects variations in the processing loads of the plurality of microprocessors, generates load balancing target information which includes information on the storage areas to which the ownership is migrated, information on the migration-source microprocessor serving as the migration source of the ownership, and information on the migration-destination microprocessor serving as the migration destination of the ownership, and migrates the ownership to the storage areas with timing such that there is no drop in the processing load of the migration-destination microprocessor contained in the load balancing target information.
摘要:
In one embodiment, a storage system comprises: a first type interface being operable to communicate with a server using a remote memory access; a second type interface being operable to communicate with the server using a block I/O (Input/Output) access; a memory; and a controller being operable to manage (1) a first portion of storage areas of the memory to allocate for storing data, which is to be stored in a physical address space managed by an operating system on the server and which is sent from the server via the first type interface, and (2) a second portion of the storage areas of the memory to allocate for caching data, which is sent from the server to a logical volume of the storage system via the second type interface and which is to be stored in a storage device of the storage system corresponding to the logical volume.
摘要:
Exemplary embodiments provide information processing system and data processing for efficient I/O processing in the storage system. In one aspect, a storage system comprises: a memory; and a controller being operable to execute a process for data stored in the memory so that an address of the data stored in the memory is changed between a first address managed in a virtual memory on a server and a second address managed by the controller, based on a command containing an address corresponding to the first address, the command being sent from the server to the storage system. In some embodiments, the memory includes a server data memory and a storage data memory. In specific embodiments, in response to the command from the server, the controller is operable to change a status of data stored in the memory from server data to storage data or from storage data to server data.
摘要:
The overall processing function of a storage apparatus is improved by suitably migrating ownership.The storage apparatus comprises a plurality of microprocessors; a plurality of storage areas formed in a drive group configured from a plurality of physical drives; and a management unit which manages, as the microprocessors which possess ownership to the storage areas, the microprocessors which handle data I/Os to/from one or more storage areas among the plurality of storage areas, wherein the management unit detects variations in the processing loads of the plurality of microprocessors, selects a migration-source microprocessor which migrates the ownership and a migration-destination microprocessor which is the ownership migration destination on the basis of variations in the processing load, and determines whether to migrate the ownership on the basis of information on a usage status of resources of each of the storage areas to which the migration-source microprocessor possesses ownership.
摘要:
When a snapshot virtual volume is provided to the host as an OS image of a virtual machine in a system where a single V-VOL is used by a single VM and all the VMs are started concurrently, burdensome Copy-on-Write (CoW) accesses placing heavy I/O loads on the storage occur in concentrated manner, and the starting time is elongated. The present invention solves the problem by measuring the I/O pattern (number of IO per unit time for reading/writing) in page units during starting of the system prior to having the VMs started concurrently, and based on the measurement results, performs saving and copying of the target pages of the write access to a snapshot pool prior to starting the VM. This preliminary saving enables to reduce the CoW accesses having a high access load, and to enable reduction of the VM starting time and efficient use of the pool capacity.
摘要:
A storage system for managing a plurality of asynchronous remote copy proceedings between a plurality of first storage control devices and a plurality of second storage control devices, wherein each of a plurality of second storage control devices stores one or more update data corresponding to one or more update data related information including the same update reflection time information with the one that is received or older update reflection time information than this in a one or more second logical volume and changes status of the one or more second logical volumes to suspend status.
摘要:
A copy source storage controller received write data added with a time and issued from a host computer transfers the write data with the time to a copy destination storage controller. If there are a plurality of copy destination storage controllers, a representative copy destination storage controller compares times of write data copied to the plurality of copy destination storage controllers, and writes the write data in copy destination logical volumes in the sequential order of time. The representative copy destination storage controller judges that integrity of the write data is established, if a communication procedure is established with the copy destination storage controller and if the statuses of the copy source/destination logical volumes are coincident. In remote copy which guarantees integrity of write data and traverses a plurality of storage controllers, it is possible to judge at an optional time point whether integrity of write data can be guaranteed.
摘要:
A storage system maintains consistency of the stored contents between volumes even when a plurality of remote copying operations are executed asynchronously. A plurality of primary storage control devices and a plurality of secondary storage control devices are connected by a plurality of paths, and remote copying is performed asynchronously between respective first volumes and second volumes. Write data transferred from the primary storage control device to the secondary storage control device is held in a write data storage portion. Update order information, including write times and sequential numbers, is managed by update order information management portions. An update control portion collects update order information from each update order information management portion, determines the time at which update of each second volume is possible, and notifies each-update portion. By this means, the stored contents of each second volume can be updated up to the time at which update is possible.
摘要:
A host I/F unit has a management table for managing an MPPK which is in-charge of the control of input/output processing for a storage area of an LDEV, and if a host computer transmits an input/output request for the LDEV, the host I/F unit transfers the input/output request to the MPPK which is in-charge of the input/output processing for the LDEV based on the management table, an MP of the MPPK performs the input/output processing based on the input/output request, and the MP of the MPPK also judges whether the MPPK that is in-charge of the input/output processing for the LDEV is to be changed, and sets the management table so that an MPPK which is different from the MPPK that is in-charge is to be in-charge of the input/output processing for the LDEV.
摘要:
During an asynchronous remote copy process for a plurality of asynchronous remote copy pairs, a copy of data in a migration source primary storage area is stored in a migration destination primary storage area, and the copy of data in the migration source primary storage area is also stored in a migration destination secondary storage area through a migration destination primary storage area or a migration source secondary storage area. Then, for an asynchronous remote copy pair established between the migration destination primary storage area and the migration destination secondary storage area together with the above-described asynchronous remote copy pairs, the asynchronous remote copy process is executed in such a method that a copy of writing data is stored in a plurality of secondary storage areas in accordance with the write request sequence issued by a computer. As such, an asynchronous remote copy pair between any two specific storage systems is migrated to be an asynchronous remote copy pair among any other two storage systems.