Abstract:
The present invention relates to a catalyst system, to a method of manufacturing this system, and also to uses of this system. The catalyst system of the invention is characterized in that it comprises molecules of a polymer having, at one of its ends or along the chain, one or more polar functional groups; a solvent, said solvent, due to the fact of said polar functional group of said polymer, provoking and maintaining, when said molecules of the polymer are introduced thereinto, an organization of said molecules of the polymer into aggregates, micelles or vesicles so that the polar functional groups of said polymer are located inside the aggregates, micelles or vesicles formed; and a catalyst activator and a catalyst trapped in said aggregates, micelles or vesicles of said polymer. The catalyst system of the present invention may be used, for example, for catalyzing a (co)polymerization of olefins.
Abstract:
Process for preparing homopolymers of oxiranes, or for preparing copolymers of oxiranes and comonomers, via anionic polymerization in the presence of an alkali metal compound and of an organylaluminum compound, which comprises avoiding any use of crown ethers or of cryptands during the polymerization.
Abstract:
The invention relates to a process for preparation of homopolymers composed of oxiranes, or of copolymers composed of oxirans and comonomers, via anionic polymerization, which comprises carrying out a polymerization in the presence of a quaternary ammonium and/or phosphonium compound and of a mononuclear organylaluminum compound.
Abstract:
Process for preparing homopolymers of α-methylstyrene, or copolymers of α-methylstyrene and comonomers, by anionic polymerization in the presence of an initiator composition, which comprises using an initiator composition in which potassium hydride and at least one organylaluminum compound are present.
Abstract:
In a process for the anionic polymerization of vinylaromatic monomers or dienes in the presence of a lithium organyl or lithium alcoholate and a magnesium and/or an aluminum compound, a sterically hindered phenol or amine is added.
Abstract:
A process for the continuous anionic polymerization or copolymerization of styrene or diene monomers using an alkali metal alkyl compound as polymerization initiator is carried out in the presence of an alkyl- or arylmetal compound of an element which occurs in at least divalent form as rate regulator, preferably under non-isothermal conditions and without back-mixing in a tubular or tube-bundle reactor, preferably using an alkyl- or arylmetal compound A of the formula R1M1 and an alkyl- or arylmetal compound B of the formula R2nM2 in a molar ratio between B and A of from 0.1:1 to 500:1, where M1 is Li, Na or K; R1 is hydrogen, C1-C20-alkyl, C6-C20-aryl, or C7-C20-alkyl-substituted aryl; M2 is an n-valent element from group 2a, 2b or 3a of the Periodic Table; and R2 is hydrogen, halogen, C1-C20-alkyl or C6-C20-aryl; and a special anionic polymerization initiator containing no Lewis base.
Abstract:
Stage I Group 1 metal/porous metal oxide compositions or Stage II Group 1 metal/porous metal oxide compositions are shown to be useful to remove impurities and act as drying agents for various types of solvents and for olefinic monomers used in anionic polymerizations. One important advantage of these compositions is their ability to dry simultaneously solvent and monomers, without inducing a significant polymerization of the latter. Another important characteristic is the capacity of the compositions to be totally inactive toward conventional anionic polymerization which allows them to be left in situ during the polymerization itself.
Abstract:
A process for the preparation of a silicon containing transition metal compound that includes the steps of (a) non-hydrolytic sol-gel condensation of a silane of formula LxSiQn wherein L is a σ-bonded ligand, Q is an anionic ligand, and x+n=4 with a halogenated silane (or siloxane) and an alkoxysilane, (b) optionally alkylation, (c) deprotonation and (d) addition of a transition metal compound. The process allows for the preparation of transition metal compounds which may suitably be used with cocatalysts for the polymerization of olefins, in particular for such processes carried out in the gas phase.
Abstract:
The invention relates to an initiator composition for anionic polymerization, comprising at least one alkali metal hydride selected from LiH, NaH, and KH, and at least one organylaluminum compound, and to a process for the anionic polymerization of styrene monomers or of diene monomers using the initiator composition.
Abstract:
Stage I Group 1 metal/porous metal oxide compositions or Stage II Group 1 metal/porous metal oxide compositions are shown to be useful to remove impurities and act as drying agents for various types of solvents and for olefinic monomers used in anionic polymerizations. One important advantage of these compositions is their ability to dry simultaneously solvent and monomers, without inducing a significant polymerization of the latter. Another important characteristic is the capacity of the compositions to be totally inactive toward conventional anionic polymerization which allows them to be left in situ during the polymerization itself.