Abstract:
An Autonomous Collision Avoidance Navigation System comprising navigating a route between a first location and a second location using a route tracking algorithm, detecting an obstacle and the obstacle's bearing, speed, distance, and direction of travel with respect to ownship, determining whether a collision between the ownship and the obstacle is probable, reducing ownship speed when a collision distance is less than a predetermined distance, determining a new heading using fuzzy logic and MCAD, and changing ownship course to the new heading, and to resume the route tracking algorithm when the obstacle is cleared from probably collision.
Abstract:
Methods, devices, and systems for use in accomplishing registration of a patient to a robot to facilitate image guided surgical procedures, such as stereotactic procedures.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
A device, system and method for interfacing between an end effector of a manipulator and a surgical tool. Embodiments may include an upper tool holder element and a lower tool holder element. Embodiments may also include a drape between the end effector and the manipulator. Embodiments may also include two force sensors and a coupling arranged in a force sensor system for use with an end effector that includes a tool roll driver.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
Methods, devices, and systems for use in accomplishing registration of a patient to a robot to facilitate image guided surgical procedures, such as stereotactic procedures.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for defining and executing automated movements using robotic arms (such as robotic arms configured for use in performing surgical procedures), so that a remotely-located surgeon is relieved from causing the robotic arm to perform the automated movement through movement of an input device such as a hand controller.
Abstract:
Methods, devices, and systems for use in accomplishing registration of a patient to a robot to facilitate image guided surgical procedures, such as stereotactic procedures.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for defining and executing automated movements using robotic arms (such as robotic arms configured for use in performing surgical procedures), so that a remotely-located surgeon is relieved from causing the robotic arm to perform the automated movement through movement of an input device such as a hand controller.
Abstract:
A device, system and method for interfacing between an end effector of a manipulator and a surgical tool. Embodiments may include an upper tool holder element and a lower tool holder element. Embodiments may also include a drape between the end effector and the manipulator. Embodiments may also include two force sensors and a coupling arranged in a force sensor system for use with an end effector that includes a tool roll driver.