Abstract:
A method for reducing particle contamination during implantation of ions comprises providing an implantation system for implanting ions into a workpiece via an ion beam, wherein one or more components are under selective vacuum and have one or more contaminants in a first state disposed thereon. A gas is introduced to the implantation system, wherein the gas generally reacts with at least a portion of the one or more contaminants, therein transforming the at least a portion of the one or more contaminants into a second state The at least a portion of the one or more contaminants in the second state remain disposed on the one or more components, and wherein the at least a portion of the second state of the one or more contaminants generally does not produce particle contamination on the one or more workpieces.
Abstract:
An improved scan and tilt apparatus for an ion implanter wherein a wafer-receiving platen assembly is received on the end member of a multiple axis arm system which is operable to effect scanning motion of the wafer along a straight line which intercepts the wafer tilt axis in any tilt position of the platen assembly. The arm system includes a rail and linear bearing system which interconnects an input member with the end member of the arm system to restrict the scanning motion to a straight line.
Abstract:
An ion beam implantation system. An ion beam is controllably deflected from an initial trajectory as it passes through spaced parallel that are biased by a control circuit. Once deflected, the ion beam enters an electrostatic lens that redeflects the once deflected ion beam. When the beam exits the lens it moves along a trajectory that impacts a workpiece. By controlled deflection of the beam multiple parallel beam paths result, all of which input the workpiece at a uniform impact angle.
Abstract:
The present invention is directed to accounting for crystal cut error data in ion implantation systems, thereby facilitating more accurate ion implantation. One or more aspects of the invention also consider possible shadowing effects that can result from features formed on the surface of a wafer being doped. According to one or more aspects of the invention, crystal cut error data and optionally feature data also are periodically fed forward in one or more ion implantation stages or systems to ascertain how to re-orient the ion beam with respect to the workpiece to achieve desired implantation results.
Abstract:
Ion implantation systems and scanning systems therefor are provided, in which focus adjustment apparatus is provided to dynamically adjust a focal property of an ion beam to compensate for at least one time varying focal property of a scanner. Methods are provided for providing a scanned ion beam to a workpiece, comprising dynamically adjusting a focal property of an ion beam, scanning the ion beam to create a scanned ion beam, and directing the scanned ion beam toward a workpiece.
Abstract:
An end station for an ion implanter includes a loading station, a loadlock station, a vacuum chamber and a wafer handler within the vacuum chamber. The wafer handler includes a wafer-receiving platen assembly on the end of a multiple axis arm system wherein the arm system is capable of positioning the wafer for low and high angle of incidence implantation, rotating the wafer about an axis perpendicular to the wafer surface, and effecting scanning motion of the wafer along a straight line which intercepts the wafer tilt axis in any tilt position of the platen assembly. The invention further includes a loadlock including an upper element receiving wafers from the loading station and a lower element operable to position wafers for engagement by a transfer arm which transfers wafers from the loadlock to the wafer handler.
Abstract:
A defining aperture for an ion implanter in which wafers are implanted at high tilt angles, which aperture is configured to project a substantially circular beam pattern on the surface of the tilted wafer. One embodiment includes one or more movable aperture plates having elliptical apertures formed therein operating in conjunction with a fixed aperture plate having a circular aperture. Other embodiments include movable elliptical apertures, and a circular aperture rotatable about an axis perpendicular to the tilt axis of the wafer. Where an electron flood ring is used, one or more movable rings having elliptical apertures opening can be used.
Abstract:
A system, apparatus, and method for determining position and two angles of incidence of an ion beam to a surface of a workpiece is provided. A measurement apparatus having an elongate first and second sensor is coupled to a translation mechanism, wherein the first sensor extends in a first direction perpendicular to the translation, and wherein the second sensor extends at an oblique angle to the first sensor. The first and second elongate sensors sense one or more characteristics of the ion beam as the first and second sensors pass through the ion beam at a respective first time and a second time, and a controller is operable to determine a position and first and second angle of incidence of the ion beam, based, at least in part, on the one or more characteristics of the ion beam sensed by the first sensor and second sensor at the first and second times.
Abstract:
The present invention facilitates semiconductor device fabrication by obtaining angle of incidence values and divergence of an ion beam normal to a plane of a scanned beam. A divergence detector comprising a mask and profiler/sensor is employed to obtain beamlets from the incoming ion beam and then to measure beam current at a number of vertical positions. These beam current measurements are then employed to provide the vertical angle of incidence values, which provide a vertical divergence profile that serves to characterize the ion beam. These values can be employed by an ion beam generation mechanism to perform adjustments on the generated ion beam or position of the workpiece if the values indicate deviation from desired values.
Abstract:
The present invention is directed to implanting ions in a workpiece in a serial implantation process in a manner that produces a scan pattern that resembles the size, shape and/or other dimensional aspects of the workpiece. This improves efficiency and yield as an ion beam that the workpiece is oscillated through does not significantly “overshoot” the workpiece. The scan pattern may be slightly larger than the workpiece, however, so that inertial effects associated with changes in direction, velocity and/or acceleration of the workpiece as the workpiece reverses direction in oscillating back and forth are accounted for within a small amount of “overshoot”. This facilitates moving the workpiece through the ion beam at a relatively constant velocity which in turn facilitates substantially more uniform ion implantation.