Abstract:
The present application is directed to an assembly comprising an electronic device and a multilayer film. The multilayer film comprises a barrier stack adjacent the electronic device, and a weatherable sheet adjacent the barrier stack opposite the electronic device. The weatherable sheet is bonded to the electronic device.
Abstract:
A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.
Abstract:
Multilayer films are provided that exhibit a colored appearance when viewed at an oblique angle as a result of one or more reflection bands in the visible region of the spectrum. The films however provide no substantial reflection bands in either the visible or near infrared regions for light normally incident on the film. The films can be made to shift from clear at normal incidence to an arbitrary designed color at an oblique angle without necessarily becoming cyan.
Abstract:
The present application is directed to an assembly comprising an electronic device, and a multilayer film. The multilayer film comprises a substrate adjacent the electronic device, a barrier stack adjacent the substrate opposite the electronic device, and a weatherable sheet adjacent the barrier stack opposite the substrate. The multilayer film is transparent and flexible and the barrier stack and the substrate are insulated from the environment.
Abstract:
A multilayer film article is disclosed. The film includes an infrared light reflecting multilayer film having alternating layers of a first polymer type and a second polymer type and an infrared light absorbing or reflecting layer adjacent the multilayer film. The film includes a multilayer stack composed of alternating optical layers of first and second diverse polymers A, B. The optical layers when counted from one end of a first effective optical packet form a plurality of unit cells each having six optical layers arranged in relative optical thicknesses in a first cyclic permutation of 7A1B1A7B1A1B. At normal incidence the first effective optical packet provides a reflection band at infrared wavelengths and substantially transmits light at visible wavelengths.
Abstract:
A process for stretching films is described. The process preferably stretches films in a uniaxial fashion. Preferably, optical films are stretched including multilayer optical films. Other aspects of the invention include a roll of stretched film and an apparatus for stretching films.
Abstract:
Stretched polymeric films can be used in a variety of applications, including optical applications. The stretching conditions and shape of the stretching tracks in a stretching apparatus can determine or influence film properties. Methods and stretching apparatuses can include adjustable or zone-defined stretching regions.
Abstract:
A film includes a multilayer stack composed of unit cells having alternating optical layers of first and second diverse polymers A,B. The unit cells can consist essentially of two (AB), four (2A1B2C1B), or six layers (7A1B1A7B1A1B). The layers form an effective optical packet disposed between non-optical layers, the beginning and ending optical layers of which are selected to control an optical figure of merit such as spectral noise in the visible region. The arrangement of layers beginning at one end of the effective optical packet defines a specific cyclic permutation of the unit cell layer order, which provides a better figure of merit than an effective optical packet of similar design but having a different cyclic permutation.
Abstract:
Optical bodies, comprising: a plurality of first optical layers comprising a first polymer composition that comprises (i) a polyester portion having terephthalate comonomer units and ethylene glycol comonomer units, and (ii) a second portion corresponding to a polymer having a glass transition temperature of at least about 130° C.; and a plurality of second optical layers disposed in a repeating sequence with the plurality of first optical layers. Also disclosed are optical bodies comprising: (a) a plurality of first optical layers, each first optical layer being oriented; and (b) a plurality of second optical layers, disposed in a repeating sequence with the plurality of first optical layers, comprising a blend of polymethylmethacrylate and polyvinylidene fluoride. Methods of making the above-described optical bodies, and articles employing such optical bodies are also provided.
Abstract:
A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.