Abstract:
The present application relates to apoptotic anti-IgE antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use in the treatment of IgE-mediated disorders.
Abstract:
A technique for securing a flash memory block in a secure device system involves cryptographic techniques including the generation of a Message Authentication Code (MAC). The MAC may be generated each time a file is saved to one or more data blocks of a flash memory device and stored with the file's metadata and to each of the data blocks. A technique for reading and storing versioned files may be employed when applications utilize versioning.
Abstract:
A computer system includes a plurality of interdependent processors. Each interdependent processor executes an independent operating system image without sharing file system state information, and each interdependent processor further has a network access card with a first network connection and a second network connection. The computer system has a first active backplane coupled to each first network connection of each processor; a second active backplane coupled to each second network connection of each processor, the second active backplane operating in lieu of the first active backplane in case of a fail-over; and one or more peripherals connected to each of the first and second active backplanes and responsive to data requests transmitted over the first and second active backplanes.
Abstract:
A multi-chip data decoder implemented for symmetric differential phase shift keying (SDPSK) or symmetric differential quadriphase shift keying (SDQPSK) modulation formats which uses multiple-chip observation intervals to improve performance over conventional symbol-to-symbol differential detection. Input phases &phgr;k, &phgr;k−1, &phgr;k−2, and &phgr;k−3 are detected by comparing a received vector of data bits and parity bits, which contains phase transition information over multiple chips, to the set of ideal vectors of data bits and parity bits, which contain all phase transition possibilities over that set of chips in a noiseless environment. The multi-chip data detector for decoding incoming modulated data comprises a phase-difference encoder (10, 100) arranged to encode phase-differences &phgr;k−2-&phgr;k−3, &phgr;k−1-&phgr;k−2, &phgr;k-&phgr;k−1, &phgr;k-&phgr;k−2, &phgr;k−1-&phgr;k−3, and &phgr;k-&phgr;k−3 of the incoming modulated data during a multiple-chip observation interval to produce a received vector of a predetermined number of data bits and parity bits; a decoder (20, 200) arranged to decode the received vector to produce multiple bit decisions by mapping the received vector with a set of ideal vectors; and a majority voter (30, 300) arranged to choose a bit estimate from the multiple bit decisions by way of a majority rule to produce a final detected symbol from the incoming modulated data during the multiple-chip observation interval. The multi-chip data detection technique performs multiple-chip comparisons in an efficient manner, providing a significant performance and implementation improvement over conventional symbol-to-symbol differential detection while realizing design gate savings of up to 90%.
Abstract:
A low pass filter having a first mode of operation and a second mode of operation. The low pass filter includes a charging circuit, a capacitor circuit, and low power circuitry coupled to the capacitor circuit and the charging circuit. The capacitor circuit stores a first differential voltage when the low pass filter is operating in the first mode of operation. The capacitor circuit stores a second differential voltage when the low pass filter is operating in the second mode of operation. The second differential voltage is substantially equal to the first differential voltage. The charging circuit may include a charging current source coupled to a current steering circuit. The low pass filter may further include a load circuit coupled to the current steering circuit and the low power circuitry. The low pass filter may be used in a delay locked loop circuit or a phase locked loop circuit.
Abstract:
A computer system has a plurality of processors, each processor executing an independent operating system image without sharing file system state information. The system includes an active backplane coupled to the plurality of processors; and one or more data storage devices coupled to the active backplane for satisfying data requests from the plurality of processors, each of the data storage devices being adapted to secure a file when one processor writes to the file and to release the file when the processor completes operation on the file.
Abstract:
The service life of amperometric electrochemical oxygen sensors is increased by operating the electrodes of such sensors at a polarization voltage suitable for measuring the oxygen content of samples only during calibration or when measuring such samples and thereafter modulating the polarization voltage to a lower voltage such that substantially no electrical current is produced by the electrodes.
Abstract:
A technique for securing a flash memory block in a secure device system involves cryptographic techniques including the generation of a Message Authentication Code (MAC). The MAC may be generated each time a file is saved to one or more data blocks of a flash memory device and stored with the file's metadata and to each of the data blocks. A technique for reading and storing versioned files may be employed when applications utilize versioning.
Abstract:
An integrated circuit device having an output driver circuit and a control circuit. The output driver circuit outputs a first signal having a signal level according to a control value. The control circuit is coupled to receive the first signal from the output driver and adjusts the control value by a first increment until a transition event is detected. After the transition event is detected, the control circuit adjusts the control value by a second increment, the second increment being smaller than the first increment.