Abstract:
Methods and apparatus related to wireless terminal reporting alternative selection for a fixed bit size control information request report, e.g., a 4 bit uplink traffic channel request report, are described. A wireless terminal maintains a plurality of different request groups corresponding to uplink traffic to be transmitted. The same request report format includes a plurality of reporting alternatives, different reporting alternatives corresponding to different request groups. Backlog can and sometimes does exist simultaneously corresponding to request groups corresponding to different reporting alternatives. The wireless terminal uses priority information associated with the request groups having non-zero backlog to select a reporting alternative. In some embodiments, at least some of the request groups have priorities which are calculated by the wireless terminal and change as a function of determined transmission deadline information.
Abstract:
Aspect of the present disclosure include A Mobile Ad Hoc Network (MANET) in which an intermediate relay node may engage in discreet packet-dropping practices for selfish (e.g., to conserve power) or other reasons. Each node in such a MANET has a dynamic reputation level known to all other nodes. Embodiments include improving the overall performance or robustness of such a MANET by adopting a routing strategy (e.g. routing protocol) which considers the reputation levels of intermediate relaying nodes in determining the best route from a source to a destination. Embodiments of the present disclosure also include a system for discovering a route between two nodes in a communication network. One or more nodes: (i) determine a reputation level of each neighboring node; (ii) sending a route discovery message that is addressed to the destination node to one neighboring node having a highest reputation level.
Abstract:
A wireless terminal receives a broadcast uplink interference report request conveying a requested report type and/or a locally unique base station identifier. The wireless terminal receives and measures broadcast reference signals, e.g., beacon and/or pilot signals, transmitted from a plurality of base station attachment points. Specific type interference reports relate a current serving connection base station attachment point to a selected base station attachment point corresponding to the received base station identifier. Generic type interference reports relate a current serving base station connection attachment point to other unspecified base station attachment points whose broadcast reference signals have been detected by the wireless terminal. Sub-types of generic reports include summation function and maximum function reports. Timing information is sometimes used to determine report sub-type and/or sector type of the selected attachment point. The wireless terminal generates the requested report and transmits it to the current connection attachment point.
Abstract:
A base station uses a common link layer controller for multiple physical attachment points to facilitate concurrent wireless connections between different sector physical attachment points and a wireless terminal using the same link layer link. A wireless terminal maintains multiple simultaneous wireless connections for the same link layer link. A packet of user data is fragmented into a plurality of grouping of MAC frames, thus a packet portion can be communicated over a connection. A single packet is sometimes communicated with different portions conveyed over different wireless connections. Automatic repeat request, using the common link layer controller, allows for retransmission of a packet portion over a different connection than it was initially transmitted over. A wireless terminal sends connection request messages including lists of link layer identifiers associated with the wireless terminal. A base station responds with an indication of whether logical link state was already present.
Abstract:
Embodiments of the present disclosure include systems, methods, and devices for managing power consumption in a wireless sensor network. Such embodiments may include a remote server, a wide area network coupled to the remote server, at least one access point device coupled to the remote server through the wide area network, one or more sensors coupled to each other and to the access point and datasinks through the network. Each datasink can be a data coordinator and receive sensor information from the one or more sensors and transmit sensor information to the at least access point. Further, a first set of sensors are configured to be routing sensors and a second set of sensors are configured end point sensors based on a graph theoretic algorithm to reduce transmitting power of each sensor and reduce overall power of the wireless sensor network, and configuring a first operational wireless sensor network.
Abstract:
Aspect of the present disclosure include A Mobile Ad Hoc Network (MANET) in which an intermediate relay node may engage in discreet packet-dropping practices for selfish (e.g., to conserve power) or other reasons. Each node in such a MANET has a dynamic reputation level known to all other nodes. Embodiments include improving the overall performance or robustness of such a MANET by adopting a routing strategy (e.g. routing protocol) which considers the reputation levels of intermediate relaying nodes in determining the best route from a source to a destination. Embodiments of the present disclosure also include a system for discovering a route between two nodes in a communication network. One or more nodes: (i) determine a reputation level of each neighboring node; (ii) sending a route discovery message that is addressed to the destination node to one neighboring node having a highest reputation level.
Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
Systems and methodologies are described that facilitate communicating reverse link control information over OFDMA control channel(s) and CDMA control channel(s). Dedicated OFDMA control channel resources can be assigned to mobile device(s). Control information related to one or more logical control channels can be generated by a mobile device. Further, a physical control channel type (e.g., OFDMA control channel or a CDMA control channel) can be selected for sending the control information via the reverse link. For example, control information associated with periodic, logical control channels can be multiplexed and sent over the OFDMA control channel (e.g., utilizing the dedicated OFDMA control channel resources) while control information related to non-periodic, logical control channels can be transmitted over the CDMA control channel.
Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
Systems and methodologies are described that facilitate utilizing power-based rate signaling for uplink scheduling in a wireless communications system. A maximum nominal power (e.g., relative maximum transmit power that may be employed on an uplink) may be known to both a base station and a mobile device. For example, the base station and the mobile device may agree upon a maximum nominal power. According to another example, signaling related to a maximum nominal power for utilization on the uplink may be provided over a downlink. Further, selection of a code rate, modulation scheme, and the like for the uplink may be effectuated by a mobile device as a function of the maximum nominal power. Moreover, such selection may be based at least in part upon an interference cost, which may be evaluated by the mobile device.