摘要:
The invention relates to a method for producing alcohols by homogeneously catalysed hydroformylation of olefins to aldehydes and subsequent hydration of the aldehydes. The invention further relates to a system for carrying out the method. The main focus is on the separation technique for work-up of the hydroformylation mixture. The problem addressed by the invention is that specifying a work-up method for hydroformylation mixtures that utilises the specific advantages of known separation technologies but at the same time largely avoids the specific disadvantages of said separation technologies. The most important objective is to create a catalyst separation system that is as complete and at the same time conservative as possible and that operates in a technically reliable manner and entails low investment and operating costs. The method should be unrestrictedly suitable for processing the reaction output from oxo systems in “world scale” format. The problem is solved by combining membrane separation units and a thermal separation unit, the thermal separation unit being operated in such a manner that 80% to 98% of the mass introduced with the product stream into the thermal separation unit exits the thermal separation unit again as a head product.
摘要:
The invention relates to a device for the continuous, homogeneous-catalysis reaction of a liquid with a gas and optionally an additional fluid, wherein the device comprises at least one reactor having an external liquid circulation driven by a pump, and wherein the device has at least one membrane separation stage that preferably holds back the homogeneous catalyst. The aim of the invention is to specify a device that allows homogeneous-catalysis gas/liquid phase reactions, in particular hydroformylations, which operate with membrane separation of the catalyst to be performed economically at an industrially relevant scale. Said aim is achieved in that a jet loop reactor is provided as the reactor, and that the pump and the membrane separation stage are arranged in the same external liquid circuit.
摘要:
The invention relates to a method for producing alcohols by homogeneously catalyzed hydroformylation of olefins to aldehydes and subsequent hydration of the aldehydes. The invention further relates to a system for carrying out the method. The main focus is on the separation technique for work-up of the hydroformylation mixture. The problem addressed by the invention is that specifying a work-up method for hydroformylation mixtures that utilizes the specific advantages of known separation technologies but at the same time largely avoids the specific disadvantages of said separation technologies. The most important objective is to create a catalyst separation system that is as complete and at the same time conservative as possible and that operates in a technically reliable manner and entails low investment and operating costs. The method should be unrestrictedly suitable for processing the reaction output from oxo systems in “world scale” format. The problem is solved by combining membrane separation units and a thermal separation unit, the thermal separation unit being operated in such a manner that 80% to 98% of the mass introduced with the product stream into the thermal separation unit exits the thermal separation unit again as a head product.
摘要:
The invention relates to a device for the continuous, homogeneous-catalysis reaction of a liquid with a gas and optionally an additional fluid, wherein the device comprises at least one reactor having an external liquid circulation driven by a pump, and wherein the device has at least one membrane separation stage that preferably holds back the homogeneous catalyst. The aim of the invention is to specify a device that allows homogeneous-catalysis gas/liquid phase reactions, in particular hydroformylations, which operate with membrane separation of the catalyst to be performed economically at an industrially relevant scale. Said aim is achieved in that a jet loop reactor is provided as the reactor, and that the pump and the membrane separation stage are arranged in the same external liquid circuit.
摘要:
The invention relates to the synthesis of tetraphenol-substituted structures, in particular meta-substituted xylenes. Said tetraphenol-type structures are reacted to obtain organic phosphorus compounds, in particular organophosphites. The invention further relates to the production of catalytically active compositions which contain transition metals in addition to the aforementioned organic phosphorus compounds. According to another subject matter of the invention, said catalytically active compositions are used in chemical reactions with small molecules, e.g. HCN, CO, hydrogen, and amines.
摘要:
The invention relates to a method for producing a product mixture (2) by means of the technical hydroformylation of a hydrocarbon stream (1) that contains isobutene, and for separating the product mixture (2) that is obtained, as well as to a device for the claimed method and to the use of a claimed device. The problem addressed thereby is that of providing a method and an associated device that allow the amount of high-boiling substances in the product mixture (2) to be kept as low as possible and thus the yield of the reaction to be increased. The problem is solved by the use of a nano-filtration device (M) for separating the catalyst from the product mixture (2), said device having especially high permeability to 3-methylbutanoic acid.
摘要:
The problem addressed by the present invention is that of specifying a process for producing aldehydes which, compared with conventional hydroformylation, cuts CO2, which utilises alternative sources of raw materials, and which has no need for a step of providing carbon monoxide.This problem is solved by processes comprising the following steps: a) providing at least one alkane; b) photocatalytically dehydrogenating the alkane to a mixture comprising at least one olefin and hydrogen; c) adding carbon dioxide and hydrogen to the mixture; d) hydroformylating the olefin to at least one aldehyde. More particularly, n-butane is initially dehydrogenated photocatalytically and the resulting 1-butene is reacted with CO2 in a hydroformylation to form valeraldehyde.The overall process exemplified for n-butane and CO2 is as follows: n-butane→1-butene+H2(photocatalytic dehydrogenation) 1-butene+CO2+2H2→valeraldehyde+H2O(hydroformylation with CO2)
摘要翻译:本发明解决的问题在于指定生产醛的方法,其与常规加氢甲酰化相比,切割利用替代原料源的CO 2,并且不需要提供一氧化碳的步骤。 该问题由包括以下步骤的方法解决:a)提供至少一种烷烃; b)将烷烃光催化脱氢成包含至少一种烯烃和氢的混合物; c)向混合物中加入二氧化碳和氢气; d)将烯烃加氢甲酰化至至少一种醛。 更具体地,正丁烷最初被光催化脱氢,所得1-丁烯在加氢甲酰化反应中与CO 2反应生成戊醛。 正丁烷和二氧化碳示例的总体方法如下:正丁烷 - > 1-丁烯+ H 2(光催化脱氢)1-丁烯+ CO 2 + 2H 2 - >戊醛+ H 2 O(用CO 2加氢甲酰化)
摘要:
Provided is a process for producing an aldehyde from an alkylene. The process includes (a) photocatalytically dehydrogenating at least one alkane to obtain a mixture comprising at least one olefin and hydrogen, (b) adding carbon dioxide and hydrogen to the mixture, and (c) hydroformylating the olefin to at least one aldehyde. The process also includes converting carbon dioxide and hydrogen into water and carbon monoxide prior to the hydroformylating. In addition, the conversion of carbon dioxide and hydrogen into water and carbon monoxide is performed by a reverse water gas shift reaction.
摘要:
The invention relates to the synthesis of tetraphenol-substituted structures, in particular meta-substituted xylenes. Said tetraphenol-type structures are reacted to obtain organic phosphorus compounds, in particular organophosphites. The invention further relates to the production of catalytically active compositions which contain transition metals in addition to the aforementioned organic phosphorus compounds. According to another subject matter of the invention, said catalytically active compositions are used in chemical reactions with small molecules, e.g. HCN, CO, hydrogen, and amines.