摘要:
The invention relates to processes for preparing aldehydes by hydroformylation of alkenes, in which an alkene-containing feed mixture is subjected to a primary hydroformylation with synthesis gas in the presence of a homogeneous catalyst system, the primary hydroformylation being effected in a primary reaction zone from which a cycle gas containing at least some of the products and unconverted reactants of the primary hydroformylation are drawn off continuously and partly condensed, with recycling of uncondensed components of the cycle gas into the primary reaction zone, and with distillative separation of condensed components of the cycle gas in an aldehyde removal stage to give an aldehyde-rich mixture and a low-aldehyde mixture. The problem that it addresses is that of developing the process such that it achieves high conversions and affords aldehyde in good product quality even in the case of a deteriorating raw material position. More particularly, a solution is to be found for making legacy oxo process plants capable of utilizing lower-value raw material sources. This problem is solved by separating the low-aldehyde mixture into a retentate and a permeate by means of a membrane separation unit in such a way that alkenes present in the low-aldehyde mixture become enriched in the permeate, while alkanes present in the low-aldehyde mixture become enriched in the retentate. The alkene-rich permeate is then transferred into a secondary reaction zone and subjected to a secondary hydroformylation therein with synthesis gas in the presence of an SILP catalyst system. The reaction product obtained from the secondary hydroformylation is recycled into the aldehyde removal stage.
摘要:
The invention is a method for processing a mixture containing water, 3-methyl-1-butane and at least one other methylbutene. The method comprises primary distillation of the mixture, giving a gaseous primary overhead product containing methylbutene and water and a water-free primary bottom product containing 3-methyl-1-butene; condensation of the gaseous primary overhead product so as to give a condensate comprising a liquid aqueous phase and a liquid organic phase; separation of the condensate into a liquid aqueous phase and a liquid organic phase; discharge of the liquid aqueous phase; recirculation of the organic phase to the primary distillation; and finally secondary distillation of the water-free primary bottom product from the primary distillation so as to give a secondary overhead product comprising 3-methyl-1-butene and a secondary bottom product. The secondary overhead product obtained has a purity which enables it to be used directly as monomer or comonomer for preparing polymers or copolymers.
摘要:
A method and system for controlling temperature in an electric vehicle battery pack such that battery pack longevity is preserved, while vehicle driving range is maximized. A controller prescribes a maximum allowable temperature in the battery pack as a function of state of charge, reflecting evidence that lithium-ion battery pack temperatures can be allowed to increase as state of charge decreases, without having a detrimental effect on battery pack life. During vehicle driving, battery pack temperature is allowed to increase with decreasing state of charge, and a cooling system is only used as necessary to maintain temperature beneath the increasing maximum level. The decreased usage of the cooling system reduces energy consumption and increases vehicle driving range. During charging operations, the cooling system must remove enough heat from the battery pack to maintain temperatures below a decreasing maximum, but this has no impact on driving range.
摘要:
A system for cooling a fuel cell stack and a drive unit in a fuel cell vehicle is disclosed, wherein the system includes a drive unit and a fuel cell stack. An oil cooling loop for the drive unit includes a three way valve, a liquid to liquid heat exchanger, and a pump. The liquid to liquid heat exchanger may be used to transfer drive unit off heat into the stack coolant loop. By not using an oil to air heat exchanger overall heat exchanger arrangement air side pressure drop can be minimized and airflow increased. The three way valve allows decoupling of the cooling loops if needed to inhibit negative impact on the fuel cell stack.
摘要:
A thermal management system that provides air cooling and heating for a battery by flow-shifting air through a battery enclosure. The battery includes a plurality of battery cells provided in the enclosure. The enclosure includes a first manifold having a first end and second end and second manifold opposite to the first manifold having a first end and second end. The thermal management system includes a plurality of valves for allowing air flow into and out of the first end or the second end of the first manifold and a second valve for allowing air flow into and out of the first end or the second end of the second manifold to provide the flow-shifting.
摘要:
A fuel cell system that employs a heat exchanger and a charge air cooler for reducing the temperature of the cathode inlet air to a fuel cell stack during certain system operating conditions so that the cathode inlet air is able to absorb more moisture in a water vapor transfer unit. The system can include a valve that selectively by-passes the heat exchanger if the cathode inlet air does not need to be cooled to meet the inlet humidity requirements. Alternately, the charge air cooler can be cooled by an ambient airflow.
摘要:
A fuel cell system is disclosed that employs an expander for recovering mechanical energy from a cathode exhaust fluid produced by the fuel cell system to generate torque. The expander is coupled to a shaft of a compressor with a freewheel mechanism, wherein the freewheel mechanism transfers the torque from the expander to the compressor when a rate of rotation of a driveshaft of the expander is greater than the rate of rotation of the shaft of the compressor, and selectively militates against the expander acting as a restrictor to the shaft of the compressor when a rate of rotation of the driveshaft of the expander is substantially equal to or less than a rate of rotation of the shaft of the compressor.
摘要:
The invention relates to a device and a method for the continuous reaction of a liquid and a second fluid, wherein the device comprises at least two jet loop reactors interconnected in parallel and common outer liquid recirculation.
摘要:
A fuel cell assembly having a flow distribution subassembly that comprises four sets of flow channels, the first set facing an anode for distribution of a fuel reactant to said anode, the second set facing a cathode for distribution of an oxidant to said cathode, the third set in flow communication with said second set and in heat transfer relation with at least one of said anode and said cathode, and the fourth set receiving a coolant different from said oxidant.
摘要:
The invention relates to processes for preparing aldehydes by hydroformylation of alkenes, in which an alkene-containing feed mixture is subjected to a primary hydroformylation with synthesis gas in the presence of a homogeneous catalyst system, the primary hydroformylation being effected in a primary reaction zone from which a cycle gas containing at least some of the products and unconverted reactants of the primary hydroformylation are drawn off continuously and partly condensed, with recycling of uncondensed components of the cycle gas into the primary reaction zone, and with distillative separation of condensed components of the cycle gas in an aldehyde removal stage to give an aldehyde-rich mixture and a low-aldehyde mixture. The problem that it addresses is that of developing the process such that it achieves high conversions and affords aldehyde in good product quality even in the case of a deteriorating raw material position. More particularly, a solution is to be found for making legacy oxo process plants capable of utilizing lower-value raw material sources. This problem is solved by separating the low-aldehyde mixture into a retentate and a permeate by means of a membrane separation unit in such a way that alkenes present in the low-aldehyde mixture become enriched in the permeate, while alkanes present in the low-aldehyde mixture become enriched in the retentate. The alkene-rich permeate is then transferred into a secondary reaction zone and subjected to a secondary hydroformylation therein with synthesis gas in the presence of an SILP catalyst system. The reaction product obtained from the secondary hydroformylation is recycled into the aldehyde removal stage.