Abstract:
The present invention provides methods to functionalize and solubilize WCNT with a phenolic polymer such as a lignin or a PF resin followed by in-situ integration of this functionalized CNT in the presence of formaldehyde and phenol and/or lignin to generate either CNT-reinforced phenol-formaldehyde polymer or CNT-reinforced lignin-phenol-formaldehyde polymer in either liquid or powder form suitable as an adhesive in the manufacture of a lignocellulosic composite material such as OSB and plywood.
Abstract:
Modified carbon nanotubes are provided having carbon nanotube core covalently bound through C—C bonds to a polymer shell surrounding the carbon nanotube core. The polymer shell is a polymer having functional groups pointing outwardly from the shell. The functional groups are compatible with or able to covalently connect to another polymer. Such modified carbon nanotubes are more readily dispersed in a homogeneous manner in another polymer and may be used as a reinforcing filler in a polymer matrix. The modified carbon nanotubes with a core-shell structure in which the core has a substantially unidirectional orientation within the shell are produced by reacting neutral carbon nanotubes with 4-vinylaniline through a diazonium reaction in presence of one or more types of multifunctional monomers carrying a vinyl moiety and one or more functional groups for compatibilization with or connection to another polymer. The reaction is conducted at an elevated temperature without isolation of intermediates and without addition of any extra initiator or catalyst to form a polymer shell in situ around the carbon nanotube. The polymer shell is covalently bound to CNT sidewall through C—C bonds and has functional groups outwardly pointing from the shell for compatibilization with or connection to another polymer.
Abstract:
The invention relates to a process for chemically functionalizing carbon nanotubes. The process comprises dispersing carbon nanotube salts in a solvent; and chemically functionalizing the carbon nanotube salts to provide chemically functionalized carbon nanotubes.
Abstract:
A functional nanoparticle for use in the ultrasensitive identification of bacteria and gene species has a magnetic core, an insulating first shell surrounding the magnetic core, and a luminescent second shell surrounding the first shell.
Abstract:
There is disclosed an approach for the gold-coating of cores, such as magnetic nanoparticles. In some instances, the core and gold colloids can be fabricated first through irradiation, such as laser irradiation, and then mixed together for further laser irradiation. Alternatively, the cores may be fabricated using wet chemistry and subsequently coated using an irradiation method. Also disclosed is a two phase aqueous:oil system and its use in coating a material present in one phase with a second material present in the second phase.
Abstract:
Modified carbon nanotubes are provided having carbon nanotube core covalently bound through C—C bonds to a polymer shell surrounding the carbon nanotube core. The polymer shell is a polymer having functional groups pointing outwardly from the shell. The functional groups are compatible with or able to covalently connect to another polymer. Such modified carbon nanotubes are more readily dispersed in a homogeneous manner in another polymer and may be used as a reinforcing filler in a polymer matrix. The modified carbon nanotubes with a core-shell structure in which the core has a substantially unidirectional orientation within the shell are produced by reacting neutral carbon nanotubes with 4-vinylaniline through a diazonium reaction in presence of one or more types of multifunctional monomers carrying a vinyl moiety and one or more functional groups for compatibilization with or connection to another polymer. The reaction is conducted at an elevated temperature without isolation of intermediates and without addition of any extra initiator or catalyst to form a polymer shell in situ around the carbon nanotube. The polymer shell is covalently bound to CNT sidewall through C—C bonds and has functional groups outwardly pointing from the shell for compatibilization with or connection to another polymer.
Abstract:
An integrated method and apparatus to continuously produce purified Single Wall Carbon Nanotubes (SWNT) from a continuous supply of solid carbon powder fed to an induction plasma torch. The apparatus includes a reactor body disposed to maintain laminar flow of gases with the torch body and coupled to a quenching body where temperature and residence time is controlled. Conveniently, functionalization may take place in the quenching body. The torch is operated with an argon carrier gas, an argon stabilizing gas and a helium sheath gas. Solid carbon reactants are preferably mixed with at least two metal catalysts containing nickel and cobalt with additional metal oxides of yttrium and cerium being desirable.
Abstract:
The present invention provides methods to functionalize and solubilize WCNT with a phenolic polymer such as a lignin or a PF resin followed by in-situ integration of this functionalized CNT in the presence of formaldehyde and phenol and/or lignin to generate either CNT-reinforced phenol-formaldehyde polymer or CNT-reinforced lignin-phenol-formaldehyde polymer in either liquid or powder form suitable as an adhesive in the manufacture of a lignocellulosic composite material such as OSB and plywood.
Abstract:
Epoxy resins are chemically attached to carbon nanotubes (CNTs), in a one-step process in which a reaction mixture comprising the epoxy polymer, the CNTs and a bridging agent which is a chemical compound capable of forming living polymers, e.g. styrene or MMA is formed and radical formation is initiated in the reaction mixture; the epoxy polymer or monomer grafts onto the CNTs through the intermediary block of the bridging agent.
Abstract:
The invention relates to a process for formation of carbon nanotubes. The process comprises laser ablation of a bulk metal catalyst within a hydrocarbon solution to produce a feedstock containing metal catalyst nanoparticles. The feedstock is atomizing to form a feedstock aerosol. The aerosol is heated to form naotubes. An apparatus for forming carbon nanotubes is also disclosed. Nanoparticles formed in the feedstock according to the invention can be controlled to achieve a narrow size distribution, which ultimately allows for good control over size and chirality of the nanotubes formed.