Abstract:
The subject invention discloses a process for preparing a coupled styrene-isoprene-butadiene rubber which is particularly valuable for use in making automobile tire tread rubber compounds which comprises the steps of (1) solution terpolymerizing in an organic solvent from about 5 weight percent to about 40 weight percent styrene, from about 1 weight percent to about 10 weight percent isoprene, and from about 50 weight percent to about 94 weight percent 1,3-butadiene, based on total monomers, to a conversion of at least about 90% to produce a living styrene-isoprene-butadiene polymer, wherein the terpolymerization is initiated with an organolithium compound, and wherein the terpolymerization is conducted in the presence of a polar modifier at a molar ratio of the polar modifier to the organolithium compound, which is within the range of about 0.5:1 to about 5:1, and wherein the terpolymerization is conducted at a temperature which is within the range of about 20.degree. C. to about 150.degree. C.; and (2) coupling the living styrene-isoprene-butadiene polymer with a coupling agent selected from the group consisting of tin tetrachloride and silicon tetrachloride, wherein the molar ratio of the coupling agent to the organolithium compound is within the range of about 3 to 1:6.
Abstract:
The subject invention discloses a process for preparing a coupled styrene-isoprene-butadiene rubber which is particularly valuable for use in making automobile tire tread rubber compounds which comprises the steps of (1) solution terpolymerizing in an organic solvent from about 5 weight percent to about 40 weight percent styrene, from about 1 weight percent to about 10 weight percent isoprene, and from about 50 weight percent to about 94 weight percent 1,3-butadiene, based on total monomers, to a conversion of at least about 90% to produce a living styrene-isoprene-butadiene polymer, wherein the terpolymerization is initiated with an organolithium compound, and wherein the terpolymerization is conducted in the presence of a polar modifier at a molar ratio of the polar modifier to the organolithium compound, which is within the range of about 0.5:1 to about 5:1, and wherein the terpolymerization is conducted at a temperature which is within the range of about 20.degree. C. to about 150.degree. C.; and (2) coupling the living styrene-isoprene-butadiene polymer with a coupling agent selected from the group consisting of tin tetrachloride and silicon tetrachloride, wherein the molar ratio of the coupling agent to the organolithium compound is within the range of about 1:3 to 1:6.
Abstract:
The subject invention discloses a process for preparing a coupled styrene-isoprene-butadiene rubber which is particularly valuable for use in making automobile tire tread rubber compounds which comprises the steps of (1) solution terpolymerizing in an organic solvent from about 5 weight percent to about 40 weight percent styrene, from about 1 weight percent to about 10 weight percent isoprene, and from about 50 weight percent to about 94 weight percent 1,3-butadiene, based on total monomers, to a conversion of at least about 90% to produce a living styrene-isoprene-butadiene polymer, wherein the terpolymerization is initiated with an organolithium compound, and wherein the terpolymerization is conducted in the presence of a polar modifier at a molar ratio of the polar modifier to the organolithium compound, which is within the range of about 0.5:1 to about 5:1, and wherein the terpolymerization is conducted at a temperature which is within the range of about 20.degree. C. to about 150.degree. C.; and (2) coupling the living styrene-isoprene-butadiene polymer with a coupling agent selected from the group consisting of tin tetrachloride and silicon tetrachloride, wherein the molar ratio of the coupling agent to the organolithium compound is within the range of about 1:3 to 1:6.
Abstract:
The present invention relates to a tire innerliner and pneumatic tires containing the same, which are prepared from a composition comprising, based on 100 parts by weight of rubber, a blend containing 30 to about 50 parts by weight of a solution polymerized styrene-butadiene rubber having a Tg ranging from -45.degree. C. to -65.degree. C. and 70 to 50 parts by weight of a halobutyl rubber.
Abstract:
It has been determined that certain rubbery polymers having multiple glass transition temperatures can be utilized in making tires which have improved rolling resistance, improved wet skid resistance, and outstanding tread wear. These rubbery polymers are derived from at least one conjugated diolefin monomer, have a first glass transition temperature which is between -110.degree. C. and -20.degree. C. and have a second glass transition temperature which is between -50.degree. C. and 0.degree. C. These rubber polymers can be homopolymers of conjugated diolefin monomers, copolymers of more than one conjugated diolefin monomer, or copolymers derived from at least one conjugated diolefin monomer and at least one vinyl aromatic monomer.
Abstract:
The subject invention discloses a process for preparing a coupled styrene-isoprene-butadiene rubber which is particularly valuable for use in making automobile tire tread rubber compounds which comprises the steps of (1) solution terpolymerizing in an organic solvent from about 5 weight percent to about 40 weight percent styrene, from about 1 weight percent to about 10 weight percent isoprene, and from about 50 weight percent to about 94 weight percent 1,3-butadiene, based on total monomers, to a conversion of at least about 90% to produce a living styrene-isoprene-butadiene polymer, wherein the terpolymerization is initiated with an organolithium compound, and wherein the terpolymerization is conducted in the presence of a polar modifier at a molar ratio of the polar modifier to the organolithium compound, which is within the range of about 0.5:1 to about 5:1, and wherein the terpolymerization is conducted at a temperature which is within the range of about 20.degree. C. to about 150.degree. C.; and (2) coupling the living styrene-isoprene-butadiene polymer with a coupling agent selected from the group consisting of tin tetrachloride and silicon tetrachloride, wherein the molar ratio of the coupling agent to the organolithium compound is within the range of about 1:3 to 1:6.
Abstract:
Copolymers of at least two acrylate monomers such as isobutyl methacrylate and 2-ethylhexyl acrylate, an organic acid or acid anhydride, and N-vinyl-2-pyrrolidone are prepared by emulsion polymerization. The polymer is then coagulated and dried, and dry resin is mixed with a water miscible coalescing solvent and a volatile amine. The amine-treated resin is water reducible and when used as a coating resin produces coatings of unusual water resistance and adhesion to metal surfaces.
Abstract:
The subject invention discloses a process for preparing a coupled styrene-isoprene-butadiene rubber which is particularly valuable for use in making automobile tire tread rubber compounds which comprises the steps of (1) solution terpolymerizing in an organic solvent from about 5 weight percent to about 40 weight percent styrene, from about 1 weight percent to about 10 weight percent isoprene, and from about 50 weight percent to about 94 weight percent 1,3-butadiene, based on total monomers, to a conversion of at least about 90% to produce a living styrene-isoprene-butadiene polymer, wherein the terpolymerization is initiated with an organolithium compound, and wherein the terpolymerization is conducted in the presence of a polar modifier at a molar ratio of the polar modifier to the organolithium compound, which is within the range of about 0.5:1 to about 5:1, and wherein the terpolymerization is conducted at a temperature which is within the range of about 20.degree. C. to about 150.degree. C.; and (2) coupling the living styrene-isoprene-butadiene polymer with a coupling agent selected from the group consisting of tin tetrachloride and silicon tetrachloride, wherein the molar ratio of the coupling agent to the organolithium compound is within the range of about 1:3 to 1:6.
Abstract:
Copolymers of at least two acrylate monomers such as isobutyl methacrylate and 2-ethylhexyl methacrylate, an organic acid or acid anhydride, and N-vinyl-2-pyrrolidone are incorporated into water reducible coating compositions typified by the following general formulation:______________________________________ Parts by weight ______________________________________ Resin 20 - 30 Amine 1 - 3 Defoamer .2 - .5 Water soluble solvent 10 - 11 Water insoluble solvent 2 - 4 Water 45 - 60 ______________________________________ The coating compositions of the above recipe yield clear coatings with good adhesion and water resistance.