摘要:
Disclosed is a decorative laminate structure having at least two sheets of polycarbonate and at least one decorative image layer there-between two sheets of polycarbonate, and a method of making the decorative laminate structure. Through heat and pressure the sheet layers and the decorative image layer are bonded together resulting in a decorative laminate structure of this invention. This product is intended for use primarily to produce decorative articles which include counter tops, table tops, cabinet doors, game boards, toys, panels for shower stalls, hot tubs, markerboards, indoor and outdoor signs, seamless vanity tops including sink, soap dish, back splash, flooring and others.
摘要:
Disclosed is a decorative laminate structure having at least two sheets of polycarbonate and at least one decorative image layer there-between two sheets of polycarbonate, and a method of making the decorative laminate structure. Through heat and pressure the sheet layers and the decorative image layer are bonded together resulting in a decorative laminate structure of this invention. This product is intended for use primarily to produce decorative articles which include counter tops, table tops, cabinet doors, game boards, toys, panels for shower stalls, hot tubs, markerboards, indoor and outdoor signs, seamless vanity tops including sink, soap dish, back splash, flooring and others.
摘要:
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
摘要:
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
摘要:
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
摘要:
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.