摘要:
Carbon dioxide-reversibly-protected chain extension-crosslinking agents and a preparation method and use thereof are disclosed, The carbon dioxide-reversibly-protected chain extension-crosslinking agents have chemical structures represented by Formula I, Formula II, Formula III or Formula IV, wherein, n, m and p are integers, R is either OCH2CH(CH3) or OCH2CH2, 1≤n≤20, 1≤m≤10, and 1≤p≤10.
摘要:
The present disclosure provides a blue organic electroluminescent device comprising: a substrate; an anode layer disposed on the substrate; a light emitting layer disposed on the anode layer, the light emitting layer being formed from a blue organic fluorescent material and a hole-type organic host material, wherein the blue organic fluorescent material is 8.0% to 25.0% by mass of the hole-type organic host material; and a cathode layer disposed on the light emitting layer.
摘要:
This invention provides a polymer-bonded CA4 pharmaceutical compound and a preparation method therefor. The polymer-bonded CA4 drug provided in this invention has a structure represented by formula (I). With respect to the bonded pharmaceutical compound provided by this invention, CA4 is grafted onto a specific polymer carrier, so that the resultant bonded drug may be enriched in tumor vessels and the active drug is slowly released. Therefore, an efficacy of destroying tumor vessels is exerted at a tumor site for a long period, an excellent tumor inhibition effect is achieved, and the problem of poor therapeutic effects due to short action time of CA4P is effectively solved, and thus it has a broad prospect of development in the field of tumor treatment. Additionally, the preparation method provided in this invention is simple and has wide sources of raw materials, and it is possible to achieve scale production and industrialization.
摘要:
This invention provides a metallocene complex and the preparation method thereof and a catalyst composition. This catalyst composition comprises a metallocene complex represented by formula (I) and an organic boron salt. Compared to the prior art, the catalyst used in this invention, which is the metallocene complex represented by formula (I), does not contain a group bonding between the heterocyclic fused cyclopentadienyl ring and the transition metal, and the coordination space of the central metal has a large opening degree. Therefore, the catalytic activity for more sterically hindered monomers is higher, and the comonomer incorporation is also higher. Furthermore, the metallocene complex represented by formula (I) used in this invention is a heterocyclic ring fused cyclopentadienyl ligand. Heterocyclic rings have relatively strong electron-donating capacity. By fusing a cyclopentadienyl group using heterocyclic rings, it is possible to change the electronic effect of the metal center and in turn increase the activity of catalyst. Therefore, by using the metallocene complex represented by formula (I), it is possible to prepare copolymers of ethylene with other olefins at high activity and high comonomer incorporation, and it is also possible to catalyze the polymerization of styrene and substituted styrene at high syndiotacticity and high activity.
摘要:
The invention relates to a yellow light afterglow material and a preparation method thereof as well as an LED illuminating device using the same. The yellow light afterglow material comprises the chemical formula of aY2O3.bAl2O3.cSiO2:mCe.nB.xNa.yP, where a, b, c, m, n, x and y are coefficients, and a is not less than 1 but not more than 2, b is not less than 2 but not more than 3, c is not less than 0.001 but not more than 1, m is not less than 0.0001 but not more than 0.6, n is not less than 0.0001 but not more than 0.5, x is not less than 0.0001 but not more than 0.2, and y is not less than 0.0001 but not more than 0.5; wherein Y, Al and Si are substrate elements, and Ce, B, Na and P are activators. The yellow light afterglow material is prepared by the following steps: weighing oxides of elements or materials which can generate oxides at high temperature by molar ratio as raw materials, evenly mixing and then sintering the raw materials at 1200-1700° in a reducing atmosphere.
摘要:
The invention relates to a yellow light afterglow material and a preparation method thereof as well as an LED illuminating device using the same. The yellow light afterglow material comprises the chemical formula of aY2O3.bAl2O3.cSiO2:mCe.nB.xNa.yP, where a, b, c, m, n, x and y are coefficients, and a is not less than 1 but not more than 2, b is not less than 2 but not more than 3, c is not less than 0.001 but not more than 1, m is not less than 0.0001 but not more than 0.6, n is not less than 0.0001 but not more than 0.5, x is not less than 0.0001 but not more than 0.2, and y is not less than 0.0001 but not more than 0.5; wherein Y, Al and Si are substrate elements, and Ce, B, Na and P are activators. The yellow light afterglow material is prepared by the following steps: weighing oxides of elements or materials which can generate oxides at high temperature by molar ratio as raw materials, evenly mixing and then sintering the raw materials at 1200-1700° in a reducing atmosphere.
摘要:
The present invention provides organic dyes having a rigid donor and the process for producing the same. The organic dye has the structure of formula (i) or formula (ii), wherein r1 is selected from h or c1-c18 alkyl; r5 is selected from h, c1-c18 alkyl or c1-c18 alkoxy; r6 and r7 are independently selected from h, c1-c18 alkyl, c1-c18 alkoxyphenyl or c1-c18 alkylphenyl; x is selected from any one of the groups represented by formulae (a) to (d); y is selected from a group represented by formula (e) or formula (f); in the formula (e), r2 and r3 are independently selected from h, f, c1-c18 alkyl or c1-c18 alkoxyphenyl; r4 is selected from any one of the groups represented by formulae (g) to (i). The present invention also provides a dye-sensitized solar cell which has a dye layer made from said organic dyes and has a relatively high power conversion efficiency.
摘要:
A method for extracting and separating a rare-earth element. Cations and anions in a quaternary ammonium ionic liquid extractant, that is, 2-ethylhexyl phosphate mono-2-ethylhexyl acrylate trialkyl methyl ammonium and phosphate di(2-ethylhexyl) phthalate trialkyl methyl ammonium, react with rare-earth ions to form neutral complex molecules, also, a collaborative effect and a competitive effect are present between the cations and the anions in the quaternary ammonium ionic liquid extractant in a rare-earth element extraction process, the separation factor for the rare-earth element is thus increased. The method for extracting and separating the rare-earth element provides good interfacial phenomena in the extraction process, does not generate emulsification, obviates the need for extractant saponification, and provides increased separation factor for rare-earth elements, and particularly increased separation factor for heavy rare-earth elements. In addition, the rare-earth element extraction and separation method is of reduced extraction acidity, of reduced stripping acidity, and of reduced acid consumption.
摘要:
The present invention provides a chlorinated poly(propylene carbonate)/biomass composite material, comprising 3 wt % to 57 wt % of a chlorinated poly(propylene carbonate); 40 wt % to 94 wt % of a biomaterial; 2 wt % to 20 wt % of a rosin or a rosin derivative; 0 wt % to 1 wt % of an antioxidant; and 0 wt % to 5 wt % of a filler, wherein a sum of amounts of all components is 100 wt %. The chlorinated poly(propylene carbonate) functions as a binder, and plays an important role in the moisture resistance of the composite material. The rosin or the rosin derivative functions as a viscosifier and a lubricant, and can also improve the moisture resistance and mechanical property of the composite material. Under the synergistic effect of the above components, the composite material obtained in the present invention is excellent in both mechanical property and moisture resistance. Further, because the starting materials comprise a larger amount of biomass materials, the cost thereof is low, and because the starting materials contain no formaldehyde, benzene and the like, the material is environment friendly.
摘要:
The present invention provides a chlorinated poly(propylene carbonate)/biomass composite material, comprising 3 wt % to 57 wt % of a chlorinated poly(propylene carbonate); 40 wt % to 94 wt % of a biomaterial; 2 wt % to 20 wt % of a rosin or a rosin derivative; 0 wt % to 1 wt % of an antioxidant; and 0 wt % to 5 wt % of a filler, wherein a sum of amounts of all components is 100 wt %. The chlorinated poly(propylene carbonate) functions as a binder, and plays an important role in the moisture resistance of the composite material. The rosin or the rosin derivative functions as a viscosifier and a lubricant, and can also improve the moisture resistance and mechanical property of the composite material. Under the synergistic effect of the above components, the composite material obtained in the present invention is excellent in both mechanical property and moisture resistance. Further, because the starting materials comprise a larger amount of biomass materials, the cost thereof is low, and because the starting materials contain no formaldehyde, benzene and the like, the material is environment friendly.