Abstract:
A sealing method for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device (e.g., a hermetically sealed OLED device) are described herein. The sealing method includes the steps of: (1) cooling an un-encapsulated device; (2) depositing a sealing material over at least a portion of the cooled device to form an encapsulated device; and (3) heat treating the encapsulated device to form a hermetically sealed device. In one embodiment, the sealing material is a low liquidus temperature inorganic (LLT) material such as, for example, tin-fluorophosphate glass, tungsten-doped tin fluorophosphate glass, chalcogenide glass, tellurite glass, borate glass and phosphate glass. In another embodiment, the sealing material is a Sn2+-containing inorganic oxide material such as, for example, SnO, SnO+P2O5 and SnO+BPO4.
Abstract:
A hermetic thin film includes a first inorganic layer and a second inorganic layer contiguous with the first inorganic layer, wherein the second inorganic layer is formed as a reaction product of the first inorganic layer with oxygen and has a molar volume that is about −1% to 15% greater than a molar volume of the first inorganic layer. An equilibrium thickness of the second inorganic layer is at least 10% of but less than an as-deposited thickness of the first inorganic layer.
Abstract:
A sealing method for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device (e.g., a hermetically sealed OLED device) are described herein. The sealing method includes the steps of: (1) cooling an un-encapsulated device; (2) depositing a sealing material over at least a portion of the cooled device to form an encapsulated device; and (3) heat treating the encapsulated device to form a hermetically sealed device. In one embodiment, the sealing material is a low liquidus temperature inorganic (LLT) material such as, for example, tin-fluorophosphate glass, tungsten-doped tin fluorophosphate glass, chalcogenide glass, tellurite glass, borate glass and phosphate glass. In another embodiment, the sealing material is a Sn2+-containing inorganic oxide material such as, for example, SnO, SnO+P2O5 and SnO+BPO4.
Abstract:
A method of minimizing the formation of interference fringes in an OLED display device is disclosed comprising sealing the upper and lower glass substrates comprising the display device to one another within an enclosure wherein a pressure of the atmosphere within the enclosure is greater than the pressure of the atmosphere outside the enclosure.
Abstract:
A method is disclosed for inhibiting oxygen and moisture penetration of a device comprising the steps of depositing a tin phosphate low liquidus temperature (LLT) inorganic material on at least a portion of the device to create a deposited tin phosphate LLT material, and heat treating the deposited LLT material in a substantially oxygen and moisture free environment to form a hermetic seal; wherein the step of depositing the LLT material comprises the use of a resistive heating element comprising tungsten. An organic electronic device is also disclosed comprising a substrate plate, at least one electronic or optoelectronic layer, and a tin phosphate LLT barrier layer, wherein the electronic or optoelectronic layer is hermetically sealed between the tin phosphate LLT barrier layer and the substrate plate. An apparatus is also disclosed having at least a portion thereof sealed with a tin phosphate LLT barrier layer.
Abstract:
A multi-layer thin film laminate comprises a dyad layer including a barrier layer and a decoupling layer formed over a substrate. The barrier layer comprises a hermetic glass material selected from the group consisting of tin fluorophosphate glasses, tungsten-doped tin fluorophosphate glasses, chalcogenide glasses, tellurite glasses, borate glasses and phosphate glasses and the decoupling layer comprises a polymer material.
Abstract:
A sealing method for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device (e.g., a hermetically sealed OLED device) are described herein. The sealing method includes the steps of: (1) cooling an un-encapsulated device; (2) depositing a sealing material over at least a portion of the cooled device to form an encapsulated device; and (3) heat treating the encapsulated device to form a hermetically sealed device. In one embodiment, the sealing material is a low liquidus temperature inorganic (LLT) material such as, for example, tin-fluorophosphate glass, tungsten-doped tin fluorophosphate glass, chalcogenide glass, tellurite glass, borate glass and phosphate glass. In another embodiment, the sealing material is a Sn2+-containing inorganic oxide material such as, for example, SnO, SnO+P2O5 and SnO+BPO4.
Abstract:
A method is disclosed for inhibiting oxygen and moisture penetration of a device comprising the steps of depositing a tin phosphate low liquidus temperature (LLT) inorganic material on at least a portion of the device to create a deposited tin phosphate LLT material, and heat treating the deposited LLT material in a substantially oxygen and moisture free environment to form a hermetic seal; wherein the step of depositing the LLT material comprises the use of a resistive heating element comprising tungsten. An organic electronic device is also disclosed comprising a substrate plate, at least one electronic or optoelectronic layer, and a tin phosphate LLT barrier layer, wherein the electronic or optoelectronic layer is hermetically sealed between the tin phosphate LLT barrier layer and the substrate plate. An apparatus is also disclosed having at least a portion thereof sealed with a tin phosphate LLT barrier layer.
Abstract:
Disclosed are systems and methods for determining the shape of a glass sheet during and/or after the forming process. In one example, a system for determining the shape of a glass sheet defining an interior bulk can include a light source, an image capture device and a processor that are configured to calculate the location of an energy centroid within a selected portion of the bulk of the glass sheet.
Abstract:
Disclosed are systems and methods for determining the shape of a glass sheet during and/or after the forming process. In one example, a system for determining the shape of a glass sheet defining an interior bulk can include a light source, an image capture device and a processor that are configured to calculate the location of an energy centroid within a selected portion of the bulk of the glass sheet.