摘要:
The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.
摘要:
A method for separating a lanthanide from a mixture containing at least one other lanthanide is provided. In particular, an HPLC and liquid separation method using a chromatographic column for separating a lanthanide from a mixture containing at least one other lanthanide is provided.
摘要:
The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.
摘要:
A method for separating an amount of osmium from a mixture containing the osmium and at least one other additional metal is provided. In particular, method for forming and trapping OsO4 to separate the osmium from a mixture containing the osmium and at least one other additional metal is provided.
摘要:
The present invention provides radioactive arsenic complexes useful in diagnostic and therapeutic applications and methods for forming those arsenic complexes.
摘要:
A method for separating an amount of osmium from a mixture containing the osmium and at least one other additional metal is provided. In particular, method for forming and trapping OsO4 to separate the osmium from a mixture containing the osmium and at least one other additional metal is provided.
摘要:
An example embodiment of a method for making gold nanoparticles includes steps of reacting a gold salt with a phosphino amino acid. Example phosphino amino acids include trimers, with a particular example being a trimeric amino acid conjugate containing one phosphino group. In an example method of the invention, the gold nanoparticles may be produced in timer periods of less than about 3 minutes, and at temperatures of less than about 30° C. Other methods of the invention are directed to methods for stabilizing gold nanoparticles, and to methods for making gold nanochains.
摘要:
A method for separating an amount of osmium from a mixture containing the osmium and at least one other additional metal is provided. In particular, method for forming and trapping OsO4 to separate the osmium from a mixture containing the osmium and at least one other additional metal is provided.
摘要:
The present invention provides radioactive arsenic complexes useful in diagnostic and therapeutic applications and methods for forming those arsenic complexes.
摘要:
The invention provides a cancer therapeutic and imaging agent comprising a solution containing Gum Arabic coated 198Au nanoparticles. The Gum Arabic coated 198Au nanoparticles have been demonstrated experimentally shown to have a surprising efficacy for a single dose direct injection, reducing tumors in analog mice by 82% over a short period of time. The particles of the invention have a believed optimal size for therapy and imaging applications, and can be used as a theranostic agent in the treatment of needle accessible cancers. The invention also provides a method for forming Gum Arabic coated 198Au nanoparticles. A gold foil is irradiated to produce 198Au foil. The foil is dissolved to form radioactive gold salt. The salt is dried, and then reconstituted to form a 198Au nanoparticle precursor. The precursor is reduced with a reducing agent in an aqueous solution including Gum Arabic to form Gum Arabic coated 198Au nanoparticles.