摘要:
The disclosure relates to a two-dimensional (2D) bismuth nanocomposite, and a preparation method and use thereof, and belongs to the field of nanobiotechnology. The 2D bismuth nanocomposite of the disclosure is an ultra-thin bismuth nanosheet that is loaded with platinum nanoparticles and modified with indocyanine green (ICG) and surface targeting polypeptide Ang-2. The 2D bismuth nanocomposite Bi@Pt/ICG-Ang2 of the disclosure can not only realize the targeted photothermal and photodynamic combination therapy for tumors, but also realize the dual-mode imaging combining CT and fluorescence imaging.
摘要:
The present disclosure provides for methods for preparing ruthenium nanoparticles characterized by face centered cubic crystallographic structure characterized by small particle size, substantially homogeneous particle size distribution, substantially uniform spherical shape, and substantial high temperature stability. The present disclosure further provides for methods for preparing ruthenium nanoparticles characterized by face hexagonal close packed crystallographic structure characterized by small particle size, substantially homogeneous particle size distribution, substantially uniform spherical shape, and substantial high temperature stability.
摘要:
The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO2 while simultaneously preventing formation of RuO2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO2.
摘要:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion and a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles containing one or more metal ions (M), Ce1-xMxO2-δ, wherein x has a value from about 0.001 to about 0.95 and δ has a value of about 0.0 to about 0.5.
摘要:
A method for preparing solid ruthenium nitrosyl nitrate, including: 1) drying a ruthenium-containing spent catalyst, and calcining the spent catalyst, and cooling to room temperature, whereby yielding a ruthenium-containing solid; 2) grinding the ruthenium-containing solid to yield a powder, introducing the powder to a fluidized bed reactor, aerating the fluidized bed reactor with nitrogen or an inert gas, charging hydrogen, whereby yielding ruthenium metal; 3) contacting a mixed gas of ozone and air with the ruthenium metal, whereby yielding gaseous ruthenium tetroxide; 4) introducing the gaseous ruthenium tetroxide into a three-stage absorption plant, whereby yielding an acid solution including ruthenium nitrate; 5) adding a solid of sodium nitrite to the acid solution, stirring, and heating a resulting solution, whereby yielding a solution of ruthenium nitrosyl nitrate; and 6) extracting the solution of ruthenium nitrosyl nitrate with anhydrous ether.
摘要:
The present invention relates to a synthesis method for unsupported and supported ruthenium base (RuS2) catalysts from a ruthenium complex precursor, which is decomposed and activated by a simple activation process; these steps provide a catalyst with very high catalytic activity, in addition the incorporation of ruthenium complex precursor to a support by methods of incipient and wet impregnating is described; the obtained catalytic activities in this invention are in the order of 100 times the molybdenum sulfide catalyst without support and without promoter, 14 times the industrial supported catalyst, and 5 times the activity of the currently most active commercial unsupported catalyst.
摘要:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to cerous ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles CeO2-δ, wherein δ has a value of about 0.0 to about 0.5. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
摘要:
Disclosed are a novel compound, a method for preparing the same, and a lithium secondary battery comprising the same. More specifically, disclosed are a compound in which five MO6 octahedrons are bonded to one another around one MO6 octahedron such that the MO6 octahedrons share a vertex, to form hollows and Li cations substituted instead of Na cations using an ion substitution method are present in the hollows, and a crystal structure thereof is not varied even upon intercalation and deintercalation of Li cations, a method for preparing the same, and a lithium secondary battery comprising the same as a cathode active material.
摘要:
A method of producing lithium metal oxides can include mixing lithium salt and a metal oxide to form a composition, heating the composition in a first reactor, transferring the composition to a second reactor, and passing the composition through the second reactor to anneal the composition to form lithium metal oxides. The second reactor can be a fluidized bed reactor. The lithium metal oxide can have an average crystal size of between about 5 microns and about 20 microns.
摘要:
The present invention relates to a process for preparing a trichloroammineplatinate salt by reacting a tetrachloroplatinate salt in aqueous solution in the presence of ammonium chloride and an alkali chloride with one or more carbonate salts selected from the group consisting of potassium, sodium and ammonium carbonate while keeping the pH value below 7 during the reaction; the product obtained therein and a use thereof.