Abstract:
The present invention provides a method for manufacturing a low voltage driven field emitter array, comprising steps of forming a thin buffer layer on a silicon substrate, making a pattern with lots of silicon nitride masks on the layer, oxidizing the upper part of the substrate and forming a relatively thick oxide layer onto the substrate except the part under the nitride masks, during which the thick oxide layer upheaves the edges of the nitride masks and extends inwardly under the nitride masks so that the edges of the thick oxide layer under the nitride masks may have a kind of bird's beak shape in cross section, etching away the nitride mask pattern, exposing the silicon substrate for the circular parts surrounded by the bird's beak shape edges by etching away the thin buffer layer, etching away the exposed substrate for making gate holes of undercut shape, and forming metal layers on the substrate and the bottom of the gate holes by evaporating a matalic evaporant downwardly and vertically against the surface of the substrate. The diameter of the gate hole is reduced in comparison to that defined by the photomask and the FEA may be driben at relatively lower voltages.
Abstract:
The present invention provides field emitter arrays (FEAs) incorporated with metal oxide semiconductor field effect transistors (MOSFETs) and method for fabricating the same which realizes a simultaneous fabrication of two kinds of devices, namely, an FEA and MOSFETs, by using common processing steps among the processes of fabricating Si-FEAs or metal FEAs and MOSFETs, wherein the method comprises steps of forming field emission tips and active regions for MOSFETs by oxidizing selected portions of a silicon nitride layer, forming a gate insulating oxide layer for the FEA and field oxide layers for MOSFETs simultaneously by the LOGOS method and connecting gate electrodes (row line) and cathode electrodes (column line) of the FEA to MOSFETs.
Abstract:
There is disclosed a silicon field emission emitter and a method for making a silicon field emission emitter which has a good electronic characteristic and a simplified making process. The silicon field emission emitter in accordance with the embodiment of the present invention includes a silicon substrate of high density, an insulating layer on the silicon substrate of high density, a cavity formed in the insulating layer, an emitter formed with the silicon substrate of high density in a body in the cavity, and a gate electrode formed on the insulating layer. The insulating layer is made of the thermal oxide film having the thickness of 4000 angstroms and the gate electrode coats the emitter tip.
Abstract:
The present invention provides methods for manufacturing field emitter arrays on a silicon-on-insulator (SOI) wafer, one of which comprising steps of forming a doped silicon layer by doping a dopant on a single crystalline silicon layer of an SOI wafer; making a buffer oxide layer on the doped silicon layer; making a stripe pattern of silicon nitride on the buffer oxide layer; etching the buffer oxide layer using the stripe pattern as a mask; etching the doped silicon layer anisotropically using the stripe pattern as a mask; making a minute mask pattern of silicon nitride on the buffer oxide layer by patterning the stripe pattern of silicon nitride; selectively oxidizing the upper part of the doped silicon layer to form an oxide layer except on the portions under the mask pattern; etching away the mask pattern of silicon nitride and the buffer oxide layer deposited under the mask pattern; etching away the exposed doped silicon layer for making gate holes of undercut shape; forming metal layers on the SOI wafer and the bottom of the gate holes by evaporating a metallic evaporant downwardly and vertically against the surface of the SOI wafer; and forming the field emitter tips on the metal layer in the gate holes. According to the present invention, electrical isolation between one cathode line and the other may be accomplished without any junction isolation step and an extremely small size of the field emission elements may be formed uniformly over a large area.