Abstract:
A thin film transistor substrate, a display apparatus using the same and a manufacturing method thereof are provided. The display apparatus includes a thin film transistor substrate, a top substrate and a display medium layer. The thin film transistor substrate includes a composite plate and several thin film transistors. The composite plate includes a core material structure and two insulation structures. The core material structure includes a metal layer. The two insulation structures are respectively disposed at two sides of the core material structure so as to sandwich the core material structure therebetween. The thin film transistors are disposed on the composite plate. The display medium layer is disposed between the thin film transistor substrate and the top substrate.
Abstract:
The present invention provides a method of hot switching data transfer rate on the bus to hot switch the data transfer rate of the bus between the control chips without the process of RESET. When the bus between the control chips demands a large amount of data transfer, the bus is hot switched to a higher data transfer rate to fulfill the data transfer requirement. Contrarily, when the bus between the control chips demands less amount of data transfer, the bus is hot switched to a lower data transfer rate to save power consumption.
Abstract:
A bus data interface, structure and method for transmitting the data of a PCI bus is disclosed. The bus data interface comprises a high-bit transmitting buffer, a low-bit transmitting buffer, a multiplexer, a strobe generator, and a data distributor. The strobe generator utilizes the bus request signal and bus grant signal to transmit a data strobe signal in response to the PCI clock. According to the rising edge and falling edge of the data strobe signal, the data distributor retrieves data according to the data strobe signal. Further, the invention is compatible with the original PCI bus and allows the PCI bus to transmit data with a dual speed.
Abstract:
A bus for supporting plural signal line configurations and the method to switch it, used to operate in a bus between the control chips to maintain its operation flexibility. When the data transfer load in between the control chips is suitable for the bi-direction transfer, the signal line configuration of the bi-direction transfer is selected. When the direction of the bi-direction transfer switches frequently, the other signal line configuration is selected. That is, the bus signal lines are divided into two parts, each part is in charge of the data transfer in each uni-direction to avoid the turn around cycle that impacts the transfer performance.
Abstract:
A bus arbitration method within a control chipset, The control chipset further comprises a first control chip and a second control chip, data are transferred between the first and the second control chips through a bus, the bus comprises a bidirectional bus The first control chip usually control the authority to use the bus, however the second control chip has higher priority to use the bus. Accompany with a bus specification without waiting cycle, to arbitrate the authority to use the bus can be done fast and without errors. Therefore, no GNT signal line is required and the arbitration time reduces.
Abstract:
A PCI data accessing system with a read request pipeline and an application method thereof are provided. The PCI data accessing system has a PCI master device, a memory module, and a PCI control device. The PCI master device issues a first read request, and the PCI control device converts the first read request to a second read request divided into a first part and a second part. Each part of the second request requests one line data, i.e. 64 bits data. The memory module stores data requested by the PCI master device. Moreover, there is no latency time between data for the first part and the second part returned from the memory module.
Abstract:
A data transaction method between control chips. Data buffers of the control chips of the control chipset have fixed size and amount. In addition, read/write acknowledge commands are asserted in sequence according to read/write commands, by which the control chips can detect the status of the buffers within another control chips. When a control chip asserts a command, the corresponding data must be ready in advance. Therefore, the signal line for providing the waiting status, data transaction cycle and stop/retry protocol can be omitted. Accordingly, commands or data can be continuously transmitted without waiting, stop or retry, the performance is improved.
Abstract:
A thin film transistor substrate, a display apparatus using the same and a manufacturing method thereof are provided. The display apparatus includes a thin film transistor substrate, a top substrate and a display medium layer. The thin film transistor substrate includes a composite plate and several thin film transistors. The composite plate includes a core material structure and two insulation structures. The core material structure includes a metal layer. The two insulation structures are respectively disposed at two sides of the core material structure so as to sandwich the core material structure therebetween. The thin film transistors are disposed on the composite plate. The display medium layer is disposed between the thin film transistor substrate and the top substrate.
Abstract:
A method for reducing transmission latency and a control module thereof are operated inside a host and at an external USB device. The method includes following steps: when the host receives an NRDY packet, storing a first data segment to be transferred by the host at the buffer storage unit inside the host; when the host receives an ERDY packet, capturing the first data segment stored at the buffer storage unit; and transferring the first data segment to the external USB device.
Abstract:
A method of adjusting an access sequencing scheme for a number of PCI (Peripheral Component Interconnect) compliant units coupled to a PCI bus system on a computer system. These PCI-compliant units are associated respectively with a set of request signals that allow these PCI-compliant units to request the use of the PCI bus system for data transfer. The access sequencing scheme includes a first-layer access sequence loop and a second-layer access sequence loop, with the first-layer access sequence loop having a higher priority over the second-layer access sequence loop The request signals are assigned to either the first-layer access sequence loop or the second-layer access sequence loop in a predetermined manner. The user can change the assignment of a certian request signal from one loop to the other through PC's BIOS (Basic Input/Output System), so as to allow the associated PCI-compliant unit to have a higher priority level to the use of the PCI bus system.